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ABSTRACT 

A strong edge-coloring of a graph G is a mapping ϕ: EሺGሻ → N such 
that the edges at distance 0 or 1 receive distinct colors. The minimum 
number of colors required for such a coloring is called the strong 
chromatic index of G and denoted by 𝜒௦ᇱሺ𝐺ሻ. In this paper, we study the 
strong chromatic index of lexicographic product G ⋅ H of graphs G and H. 
In particular, we give tight lower and upper bounds on 𝜒௦ᇱሺ𝐺 ⋅ 𝐻ሻ. 

Keywords: edge-coloring, strong edge-coloring, strong chromatic 
index, lexicographic product. 

Introduction 

In this paper, we consider only simple and finite graphs. We use 
West’s book [1] for terminologies and notations not defined here. We 
denote by VሺGሻ and EሺGሻ the sets of vertices and edges of a graph G, 
respectively. The degree of a vertex v ∈ G is denoted by dሺvሻ and the 
maximum degree between the vertices in G by 𝛥ሺ𝐺ሻ. The chromatic number 
of a graph G is denoted by χሺGሻ. We use standard notations 𝑃௡, 𝐶௡, 𝐾௡ and 𝐾௡,௠ for the path, cycle, complete graph with 𝑛 vertices, and the complete 
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bipartite graph one part of which has n vertices, and the other one has m 
vertices, respectively. A strong edge-coloring of a graph 𝐺 is a mapping ϕ: EሺGሻ → N such that the edges at distance 0 or 1 receive distinct colors. 
The strong chromatic index of a graph 𝐺 is the minimum number of colors 
required for a strong edge coloring of the graph and is denoted by 𝜒௦ᇱሺ𝐺ሻ. 
The concept of strong edge-coloring was introduced by Fouquet and Jolivet 
in 1983 [2]. In 1985, during a seminar in Prague, Erdős and Nešetřil 
proposed the following conjecture: 

 
Conjecture 1. For every graph 𝐺 with maximum degree 𝛥ሺ𝐺ሻ,  

𝜒௦ᇱሺ𝐺ሻ ≤ ൞ 54Δሺ𝐺ሻଶ, if Δ(G) is even,14 (5Δ(𝐺)ଶ − 2Δ(𝐺) + 1), 𝑖𝑓 Δ(G) is odd. 
The Conjecture 1 was proved to be true for graphs 𝐺 with Δ(𝐺) = 3 

[3, 4], but it is still open for graphs 𝐺 with Δ(𝐺) ≥ 4. In 2006, Cranston [5] 
showed that 𝜒௦ᇱ(𝐺) ≤ 22 for graphs 𝐺 with Δ(𝐺) = 4, which was improved 
to χ௦ᇱ (𝐺) ≤ 21 in 2018 by Huang et al. [6]. In 1990, Chung, Gyárfás, 
Trotter, and Tuza [7] showed that for graphs 𝐺, with significantly large 
maximum degree Δ(𝐺), the strong chromatic index is at most 1.998Δ(𝐺)ଶ. 
The upper bound was improved to 1.93Δ(𝐺)ଶ [8] in 2018 and later to 1.772Δ(𝐺)ଶ in 2021 [9]. 

The lexicographic product of graphs was introduced by Hausdorff in 
1914 in the context of ordered sets and topology [10]. The lexicographic 
product of graphs found different implications in graph theory after and is 
actively considered in the context of various colorings (See, for example, 
[11], [12]). 

Togni [13] was first to study strong-edge coloring of various graph 
products. In particular, Togni showed that the following theorems hold true.  

 
Theorem 1 (Togni). Let 𝐺 and 𝐻 be two graphs. For the Cartesian 

product, we have χ௦ᇱ (𝐺□𝐻) ≤ χ௦ᇱ (𝐺)χ(𝐻) + χ௦ᇱ (𝐻)χ(𝐺). 
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Theorem 2 (Togni). Let 𝐺 and 𝐻 be two graphs different from 𝐾ଶ. 
For the Kronecker product 𝐺 × 𝐻 we have χ௦ᇱ (𝐺 × 𝐻) ≤ χ௦ᇱ (𝐺)χ௦ᇱ (𝐻). 

 
Theorem 3 (Togni). Let 𝐺 and 𝐻 be two graphs. For the strong 

product 𝐺 ⊠𝐻 we have 𝜒௦ᇱ(𝐺 ⊠𝐻) ≤ 𝜒௦ᇱ(𝐺)𝜒(𝐻) + 𝜒௦ᇱ(𝐻)𝜒(𝐺)  +  2𝜒௦ᇱ(𝐺)𝜒௦ᇱ(𝐻). 
 
It this paper we consider strong-edge colorings of lexicographic 

products of graphs and provide tight lower and upper bounds on strong 
chromatic index of lexicographic products.  

 
Main Results 
 
Definition 1. The lexicographic product of graphs G and H is a graph 

G ⋅ H, where V(G ⋅ H) = {(v, x) : v ∈ V(G), x ∈ V(H)} and  
E(G ⋅ H) = {((v, x), (u, y)) : (v, u) ∈ E(G) or, v = u and (x, y) ∈ E(H)}. 
 

 
 

Figure 1. The lexicographical product of P4 and P3. 
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Figure 2 illustrates the lexicographical product of P4 and P3. 
 
Definition 2. For graphs 𝐻, 𝐺, and vertex 𝑣 ∈ 𝑉(𝐺), denote by 𝑣𝐻 

the subgraph of 𝐺 ⋅ 𝐻, such that, 𝑉(𝑣𝐻) = {(𝑣, 𝑥) ∶ (𝑣, 𝑥) ∈ 𝑉(𝐺 ⋅ 𝐻)} and 𝐸(𝑣𝐻) = {൫(𝑣, 𝑥), (𝑣, 𝑦)൯ ∶ ൫(𝑣, 𝑥), (𝑣, 𝑦)൯ ∈ 𝐸(𝐺 ⋅ 𝐻)}. 
 
Definition 3. For graphs 𝐻, 𝐺, and vertexes 𝑣,𝑢 ∈ 𝑉(𝐺), denote by 𝐾(௩,௨) the subgraph of 𝐺 ⋅ 𝐻, such that,  𝑉൫𝐾(௩,௨)൯ = {(𝑤, 𝑥) ∶ 𝑤 = 𝑣 𝑜𝑟 𝑤 = 𝑢, 𝑎𝑛𝑑 (𝑤, 𝑥) ∈ 𝑉(𝐺 ⋅ 𝐻)} and  𝐸൫𝐾(௩,௨)൯ = {൫(𝑣, 𝑥), (𝑢,𝑦)൯: ൫(𝑣, 𝑥), (𝑢,𝑦)൯ ∈ 𝐸(𝐺 ⋅ 𝐻)}. 
It is easy to notice that for the lexicographic product 𝐺 ⋅ H, where 𝐺 

and 𝐻 are arbitrary graphs, subgraph 𝑣𝐻 (𝑣 ∈  𝑉(𝐺)) is isomorphic to 𝐻, 
and subgraph 𝐾(௩,௨)(𝑣,𝑢 ∈ 𝑉(𝐺)) is isomorphic to graph 𝐾௡,௡, where       𝑛 = |𝑉(𝐻)|. 

We begin our considerations with strong edge-colorings of 
lexicographic products of graphs in special cases. 

 
Lemma 1. For any graphs 𝑃௡(𝑛 ≥ 4) and 𝐻, we have χ௦ᇱ (𝑃௡ ⋅ 𝐻) = 2χ௦ᇱ (𝐻) + 3|𝑉(𝐻)|ଶ. 
 
Proof. Let V(P୬) = {vଵ, vଶ, … , v୬} and E(P୬) = {(vଵ, vଶ), (vଶ, vଷ), …,  (v୬ିଵ, v୬)}. For strong edge-coloring of each subgraph 𝑣௜𝐻 (1 ≤ 𝑖 ≤ 𝑛) we 

need at least χ௦ᇱ (𝐻) colors, and |𝑉(𝐻)|ଶ colors for strong edge-coloring of 
each subgraph 𝐾൫௩೔,௩ೕ൯ (൫𝑣௜ , 𝑣௝൯ ∈ 𝑃௡). Consider subgraphs 𝑣ଶ𝐻, 𝑣ଷ𝐻, 𝐾(௩భ,௩మ), 𝐾(௩మ,௩య), and 𝐾(௩య,௩ర). Edges from 𝐾(௩భ,௩మ), 𝐾(௩మ,௩య), and 𝐾(௩య,௩ర) are 
at distance 0 or 1 from each other and from edges in 𝑣ଶ𝐻 and 𝑣ଷ𝐻. Also, 
edges from 𝑣ଶ𝐻 are at distance 1 from edges in 𝑣ଷ𝐻. Thus, it follows that 𝜒௦ᇱ(𝑃௡ ⋅ 𝐻)  ≥ 2𝜒௦ᇱ(𝐻) + 3|𝑉(𝐻)|ଶ.  

To complete the proof of the theorem, we construct a strong edge-
coloring for 𝑃௡ ⋅ 𝐻 that uses 2𝜒௦ᇱ(𝐻) + 3|𝑉(𝐻)|ଶ colors. Let ϕ௉ be a strong 
edge-coloring of 𝑃௡ with colors {1,2,3}. 

We define edge-coloring ϕ as follows: For each 𝑖 (1 ≤ 𝑖 ≤ 𝑛), we 
color 𝑣௜𝐻 using colors {1,2, … , χ௦ᇱ (𝐻)} if 𝑖 is odd, and using colors 
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we color 𝐾(௩೔,௩೔శభ) using colors {2𝜒௦ᇱ(𝐻) + ൫ϕ௉൫(𝑣௜ , 𝑣௜ାଵ)൯ − 1൯|𝑉(𝐻)|ଶ + 1, 2𝜒௦ᇱ(𝐻) ++൫ϕ௉൫(𝑣௜ , 𝑣௜ାଵ)൯ − 1൯|𝑉(𝐻)|ଶ + 2, … , 2𝜒௦ᇱ(𝐻) ++ϕ௉൫(𝑣௜ , 𝑣௜ାଵ)൯|𝑉(𝐻)|ଶ}. 

Clearly, ϕ is a strong edge-coloring for graph 𝑃௡ ⋅ 𝐻 and uses 2𝜒௦ᇱ(𝐻) + 3|𝑉(𝐻)|ଶ colors. □ 
 
Lemma 2. For any graph H, we have χ௦ᇱ (𝐶ହ ⋅ 𝐻) = 5|𝑉(𝐻)|ଶ. 
 
Proof. Let 𝑉(𝐶ହ) = {𝑣ଵ, 𝑣ଶ, vଷ, vସ, vହ} and 𝐸(𝐶ହ) = {(𝑣ଵ, 𝑣ଶ), (𝑣ଶ, 𝑣ଷ),  (vଷ, vସ), (vସ, vହ), (𝑣ହ, 𝑣ଵ)}.Consider subgraphs 𝐾൫௩೔,௩ೕ൯ (൫𝑣௜ , 𝑣௝൯ ∈ 𝐸(𝐶ହ)) 

of graph 𝐶ହ ⋅ 𝐻. Since edges from all subgraphs 𝐾൫௩೔,௩ೕ൯ (൫𝑣௜ , 𝑣௝൯ ∈ 𝐸(𝐶ହ)) 
are at distance 0 or 1 from each other, it follows that 𝜒௦ᇱ(𝐶ହ ⋅ 𝐻) ≥5|𝑉(𝐻)|ଶ. 

Constructing a strong edge-coloring for graph 𝐶ହ ⋅ 𝐻 with 5|𝑉(𝐻)|ଶ 
colors will complete the proof of the theorem. Let us define an edge-
coloring ϕ for graph 𝐶ହ ⋅ 𝐻 as follows: color subgraphs 𝐾൫௩೔,௩ೕ൯ (൫𝑣௜ , 𝑣௝൯ ∈𝐸(𝐶ହ)) using 5|𝑉(𝐻)|ଶ colors; color subgraph 𝑣ଵ𝐻 using colors of 
subgraph 𝐾(௩య,௩ర); color subgraph 𝑣ଶ𝐻 using colors of subgraph 𝐾(௩ర,௩ఱ); 
color subgraph 𝑣ଷ𝐻 using colors of subgraph 𝐾(௩ఱ,௩భ); color subgraph 𝑣ସ𝐻 
using colors of subgraph 𝐾(௩భ,௩మ); color subgraph 𝑣ହ𝐻 using colors of 
subgraph 𝐾(௩మ,௩య). 

It is easy to verify that ϕ is a strong edge-coloring for graph 𝐶ହ ⋅ 𝐻 
and uses 5|𝑉(𝐻)|ଶ colors.  

 
We continue our considerations with general bounds on strong 

chromatic index of lexicographic products of graphs. 
 
Theorem 1. For any graphs G and H, we have  χ௦ᇱ (𝐺)|𝑉(𝐻)|ଶ ≤ χ௦ᇱ (𝐺 ⋅ 𝐻) ≤ χ(𝐺)χ௦ᇱ (𝐻) + χ௦ᇱ (𝐺)|𝑉(𝐻)|ଶ. 
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Moreover, the bounds are sharp. 
 
Proof. Let 𝑉(𝐺) = {𝑣ଵ, 𝑣ଶ, … , 𝑣௡}. First of all let us note that 

subgraphs 𝐾൫௩೔,௩ೕ൯ and 𝐾(௩ೖ,௩೗) (൫𝑣௜ , 𝑣௝൯, (𝑣௞, 𝑣௟) ∈ 𝐸(𝐺)) can be colored 

with the same colors, only if there exists a strong edge-coloring ϕீ for 

graph 𝐺, such that ϕீ ቀ൫𝑣௜ , 𝑣௝൯ቁ = ϕீ൫(𝑣௞, 𝑣௟)൯. Thus, it follows that χ௦ᇱ (𝐺 ⋅ 𝐻) ≥ χ௦ᇱ (𝐺)|𝑉(𝐻)|ଶ.  
Constructing a strong edge-coloring for graph 𝐺 ⋅ 𝐻 that uses χ(𝐺)χ௦ᇱ (𝐻) + χ௦ᇱ (𝐺)|𝑉(𝐻)|ଶ colors will prove the upper bound. Let 𝑓  be a 

proper vertex coloring for graph 𝐺 with colors {1,2, … , χ(𝐺)} and ϕீ be a 
strong edge-coloring for graph 𝐺 with colors {1,2, … , χ௦ᇱ (𝐺)}. Let us note 
that edges from subgraphs 𝑣௜𝐻 and 𝑣௝𝐻 (𝑣௜ , 𝑣௝ ∈ 𝑉(𝐺)) can be assigned the 
same colors if 𝑓 (𝑣௜) = 𝑓 ൫𝑣௝൯. Also, each subgraph 𝑣௜𝐻 (𝑣௜ ∈ 𝑉(𝐺)) can 
be colored using χ௦ᇱ (𝐻) colors and each subgraph 𝐾൫௩೔,௩ೕ൯ (൫𝑣௜ , 𝑣௝൯ ∈ 𝐸(𝐺)) 

requires |𝑉(𝐻)|ଶ colors for strong edge-coloring. 
Now we are able to define an edge-coloring ϕ as follows: For each 

edge ൫𝑣௜ ,𝑣௝൯ ∈ 𝐸(𝐺), we color edges in subgraph 𝐾൫௩೔,௩ೕ൯ using colors {(ϕீ((𝑣_𝑖, 𝑣_𝑗))  −  1) |𝑉(𝐻)|ଶ  +  1, (ϕீ((𝑣_𝑖, 𝑣_𝑗))  −  1) |𝑉(𝐻)|ଶ + + 2, … ,ϕீ((𝑣_𝑖, 𝑣_𝑗)) |𝑉(𝐻)|ଶ }. 
For each vertex 𝑣௜ ∈ 𝑉(𝐺), we color edges in subgraph 𝑣௜𝐻 using 

colors {χ௦ᇱ (𝐺)|𝑉(𝐻)|ଶ + (𝑓 (𝑣௜) − 1)χ௦ᇱ (𝐻) + 1, χ௦ᇱ (𝐺)|𝑉(𝐻)|ଶ + +(𝑓 (𝑣௜) − 1)χ௦ᇱ (𝐻) + 2, χ௦ᇱ (𝐺)|𝑉(𝐻)|ଶ + 𝑓 (𝑣௜)χ௦ᇱ (𝐻)}. 
Clearly, ϕ is a strong edge-coloring for graph 𝐺 ⋅ 𝐻 with χ(𝐺)χ௦ᇱ (𝐻) + χ௦ᇱ (𝐺)|𝑉(𝐻)|ଶ 𝑐𝑜𝑙𝑜𝑟𝑠.  
The sharpness of lower and upper bounds follows from Lemma 2 and 

Lemma 1.  
 
Figure 2 illustrates the strong edge-coloring ϕ of Pସ ⋅ Pଷ described in 

the proof of Theorem 1. 
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Figure 2. The strong edge-coloring of P5•P3 with 31 colors. 
 

Conclusion  
 
Our study began with an analysis of the strong edge-colorings of the 

lexicographic products of graphs in special cases. Lemmas 1 and 2 
established the exact value of strong chromatic index of lexicographic 
products of graphs, when first component of the product is a path, and cycle 
of length 5, respectively. Next, Theorem 1 completed our study of 
lexicographic products of graphs, by deriving sharp upper and lower bounds 
in general cases. 
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АННОТАЦИЯ 

 
Сильная реберная раскраска графа G – это отображение 𝜙:𝐸(G) → 𝑁, такое, 

что любые два ребра на расстоянии 0 или 1 получают разные цвета. Минималь-
ное количество цветов, необходимое для такого раскрашивания, называется 
сильным хроматическим индексом графа 𝐺 и обозначается как χ௦ᇱ (𝐺). В данной 
работе исследуется сильный хроматический индекс лексикографического про-
изведения графов 𝐺 ⋅ 𝐻. В частности, мы получаем точные нижние и верхние 
границы для 𝜒௦ᇱ(𝐺 ⋅ 𝐻). 

Ключевые слова: реберная раскраска, сильная реберная раскраска, силь-
ный хроматический индекс, лексикографическое произведение. 


