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ABSTRACT

A strong edge-coloring of a graph G is a mapping ¢: E(G) — N such
that the edges at distance 0 or 1 receive distinct colors. The minimum
number of colors required for such a coloring is called the strong
chromatic index of G and denoted by y:(G). In this paper, we study the
strong chromatic index of lexicographic product G - H of graphs G and H.
In particular, we give tight lower and upper bounds on y{(G - H).

Keywords: edge-coloring, strong edge-coloring, strong chromatic
index, lexicographic product.

Introduction

In this paper, we consider only simple and finite graphs. We use
West’s book [1] for terminologies and notations not defined here. We
denote by V(G) and E(G) the sets of vertices and edges of a graph G,
respectively. The degree of a vertex v € G is denoted by d(v) and the
maximum degree between the vertices in G by 4(G). The chromatic number
of a graph G is denoted by x(G). We use standard notations B,, C,,, K,, and
K, m for the path, cycle, complete graph with n vertices, and the complete
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bipartite graph one part of which has n vertices, and the other one has m
vertices, respectively. A strong edge-coloring of a graph G is a mapping
¢: E(G) — N such that the edges at distance 0 or 1 receive distinct colors.
The strong chromatic index of a graph G is the minimum number of colors
required for a strong edge coloring of the graph and is denoted by y<(G).
The concept of strong edge-coloring was introduced by Fouquet and Jolivet
in 1983 [2]. In 1985, during a seminar in Prague, Erd6s and NeSetril
proposed the following conjecture:

Conjecture 1. For every graph G with maximum degree A(G),

%A(G)Z, if A(G) is even,
xs(G) <
Z(SA(G)Z — 2A(G) + 1),if A(G) is odd.

The Conjecture 1 was proved to be true for graphs G with A(G) = 3
[3, 4], but it is still open for graphs G with A(G) = 4. In 2006, Cranston [5]
showed that y3(G) < 22 for graphs G with A(G) = 4, which was improved
to x5(G) < 21 in 2018 by Huang et al. [6]. In 1990, Chung, Gyarfas,
Trotter, and Tuza [7] showed that for graphs G, with significantly large
maximum degree A(G), the strong chromatic index is at most 1.998A(G)?.
The upper bound was improved to 1.93A(G)? [8] in 2018 and later to
1.772A(G)? in 2021 [9].

The lexicographic product of graphs was introduced by Hausdorff in
1914 in the context of ordered sets and topology [10]. The lexicographic
product of graphs found different implications in graph theory after and is
actively considered in the context of various colorings (See, for example,
[11], [12]).

Togni [13] was first to study strong-edge coloring of various graph
products. In particular, Togni showed that the following theorems hold true.

Theorem 1 (Togni). Let G and H be two graphs. For the Cartesian
product, we have

Xs(GOH) < xs(G)x(H) + xs(H)x(G).
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Theorem 2 (Togni). Let G and H be two graphs different from K.
For the Kronecker product G X H we have
Xs(G x H) < x5(G)xs(H).

Theorem 3 (Togni). Let G and H be two graphs. For the strong
product G XI H we have
Xs(G X H) < xs(G)x(H) + xs(H)x(G) + 2x5(G)xs(H).

It this paper we consider strong-edge colorings of lexicographic
products of graphs and provide tight lower and upper bounds on strong
chromatic index of lexicographic products.

Main Results
Definition 1. The lexicographic product of graphs G and H is a graph

G - H, where V(G- H) ={(v,x) : veEV(G), x € V(H)} and
E(G-H)={(v,x), (wy):(v,u) €EG)or,v=uand (x,y) € E(H)).

P3 ™

P4 L & & @

Figure 1. The lexicographical product of P4 and P3.
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Figure 2 illustrates the lexicographical product of P4 and P3.

Definition 2. For graphs H, G, and vertex v € V(G), denote by vH
the subgraph of G - H, such that, V(vH) = {(v,x) : (v,x) € V(G - H)} and
E@H) = {((v,, () : (0,5), (8,9)) € EG - H)},

Definition 3. For graphs H, G, and vertexes v,u € V(G), denote by
Ky the subgraph of G - H, such that,
V(K(v,u)) ={w,x):w=vorw=u,and (w,x) V(G- H)}and
E(Kww) = {((w,0), @ »): (v, x), @) € E@G - H)}.

It is easy to notice that for the lexicographic product G - H, where G
and H are arbitrary graphs, subgraph vH (v € V(G)) is isomorphic to H,
and subgraph K, (v,u € V(G)) is isomorphic to graph K, ,, where
n = |V(H)I.

We begin our considerations with strong edge-colorings of
lexicographic products of graphs in special cases.

Lemma 1. For any graphs B,(n = 4) and H, we have
Xs(Py - H) = 2x5(H) + 3|V (H)%.

Proof. Let V(P,) = {v4, Vs, ..., vp}and E(P,) = {(v4,Vv3), (v3,V3), ...,
(Vp—1, Vi) }. For strong edge-coloring of each subgraph v;H (1 < i < n) we
need at least x5 (H) colors, and |V (H)|? colors for strong edge-coloring of
each subgraph K (viv;) ((vi, vj) € P,). Consider subgraphs v,H, v3H,
K@, v))> Kw,wy)» and Ky, ). Bdges from K¢, 5.y, K, v,), and K, ,,) are
at distance 0 or 1 from each other and from edges in v,H and v3H. Also,
edges from v, H are at distance 1 from edges in v3H. Thus, it follows that
Xs(By - H) = 2xs(H) + 3|V (H)|?.

To complete the proof of the theorem, we construct a strong edge-
coloring for P, - H that uses 2ys(H) + 3|V (H)|? colors. Let ¢p be a strong
edge-coloring of P, with colors {1,2,3}.

We define edge-coloring ¢ as follows: For each i (1 <i < n), we
color v;H using colors {1,2,...,xs(H)} if i is odd, and using colors
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{xs(H) + 1, xs(H) + 2,...,2x;(H)}if i iseven; Foreachi(1 <i <n-—1),
we color Ky, ,, ) using colors
2xs () + (p (Wi virn)) = DIVEDI? + 1, 2x5(H) +
+(0p (Wi, vir1)) = DIV +2, ., 2x5(H) +
+ép (Wi, vir ) IV(H) Y.
Clearly, ¢ is a strong edge-coloring for graph P, - H and uses
2xs(H) + 3|V(H)|? colors. O

Lemma 2. For any graph H, we have
Xs(Cs - H) = 5|V(H)|%.

Proof. Let V(Cs) = {v,v,,V3, Vs, Vstand E(Cs) = {(vq, v3), (5, v3),
(v3,Vy), (Vy4,Vs), (s, v1)}.Consider subgraphs K(vi,vj) ((vi,vj) € E(Cs))
of graph Cs - H. Since edges from all subgraphs K (vv;) ((vi, vj) € E(Cy))
are at distance 0 or 1 from each other, it follows that y:(Cs-H) =
5|V (H)I%.

Constructing a strong edge-coloring for graph Cs - H with 5|V (H)|?
colors will complete the proof of the theorem. Let us define an edge-
coloring ¢ for graph Cs - H as follows: color subgraphs K (viv)) ((vi, vj) €
E(Cs)) using 5|V(H)|? colors; color subgraph v;H using colors of
subgraph K, ,,); color subgraph v,H using colors of subgraph K, ».);
color subgraph vz H using colors of subgraph K, ,,); color subgraph v, H
using colors of subgraph K, ,.y; color subgraph vsH using colors of
subgraph K, ».)-

It is easy to verify that ¢ is a strong edge-coloring for graph Cs - H
and uses 5|V (H)|? colors.

We continue our considerations with general bounds on strong
chromatic index of lexicographic products of graphs.

Theorem 1. For any graphs G and H, we have
Xs(@WVH)I? < x5(6 - H) < x(G)xs(H) + xs(G) |V (H)I?.
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Moreover, the bounds are sharp.

Proof. Let V(G) = {v, vy, ...,v,}. First of all let us note that
subgraphs K(w)) and Ky, v ((vi,vj), (v, v;) € E(G)) can be colored
with the same colors, only if there exists a strong edge-coloring ¢, for
graph G, such that ¢g ((vi,vj)) = ¢g((vp, v)). Thus, it follows that
Xs(G - H) = xs(@)V(H).

Constructing a strong edge-coloring for graph G - H that uses
X(@)x:(H) + x5 (G)|V(H)|? colors will prove the upper bound. Let f; be a
proper vertex coloring for graph G with colors {1,2, ..., x(G)} and ¢ be a
strong edge-coloring for graph G with colors {1,2, ..., x5(G)}. Let us note
that edges from subgraphs v;H and v;H (v;, v; € V(G)) can be assigned the
same colors if f; (v;) = f; (vj). Also, each subgraph v;H (v; € V(G)) can
be colored using x5 (H) colors and each subgraph K (v)) (vi,v;) € E(G))
requires |V (H)|? colors for strong edge-coloring.

Now we are able to define an edge-coloring ¢ as follows: For each
edge (vi, vj) € E(G), we color edges in subgraph K (viv)) using colors

{(Pe((viv)) = DIVIEDIE + 1,(de((w_i,v)) — 1) VIH)I* +
+ 2! R ch((v_i,v_j)) |V(H)|2 }
For each vertex v; € V(G), we color edges in subgraph v;H using
colors
D@D + (fe(w) — Dxs(H) + Lxs(OIVEDI? +
+(fe () — Dxs(H) + 2,x:(OIVIEDI* + fo(v)xs ()}
Clearly, ¢ 1is a strong edge-coloring for graph G -H with
X(Gxs(H) + x5(GV (H)|? colors.
The sharpness of lower and upper bounds follows from Lemma 2 and
Lemma 1.

Figure 2 illustrates the strong edge-coloring ¢ of P, - P; described in
the proof of Theorem 1.
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P53

{vq, uq) 1 . (vg, uq)

{va, ug)

(v, us) ) ¥ (v, u3)

Figure 2. The strong edge-coloring of P5*P3 with 31 colors.
Conclusion

Our study began with an analysis of the strong edge-colorings of the
lexicographic products of graphs in special cases. Lemmas 1 and 2
established the exact value of strong chromatic index of lexicographic
products of graphs, when first component of the product is a path, and cycle
of length 5, respectively. Next, Theorem 1 completed our study of
lexicographic products of graphs, by deriving sharp upper and lower bounds
in general cases.
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O CWJIBHOM XPOMATHUYECKOM NHAEKCE
JEKCUKOI'PA®UYECKHUX MPOU3BEJIEHUI T'PA®OB

A.K. /l[pamosan
Poccuticko-Apmanckuii (Cragsauckuil) ynusepcumem
AHHOTALOUSA

CunbHas peGepHas packpacka rpada G —sto otoopaxenue ¢: E(G) —» N, Takoe,
4To JIF00BIe ABa pedpa Ha pacctosHnu 0 unn 1 monydaroT pasHbie [BeTa. MUHUMAb-
HOE KOJIMYECTBO I[BETOB, HEOOXOIAWMOE IJIsi TAKOTO PACKPAIIUBAHMWS, HA3bIBAECTCS
CWJIBHBIM XPOMAaTHYECKMM MHIEKCOM rpada G u obo3nauaercs kak X;(G). B mannoi
paboTe MCCIenyeTcs CHTBHBIN XPOMAaTHYECKUH HHIEKC JIEKCHKOTPA(QUIECKOro mpo-
n3BeieHus rpagos G - H. B gacTHOCTH, MBI NOJTlyyaeM TOYHBIE HIDKHHE U BEpXHUE
rpauuust st yo(G - H).

KioueBble cioBa: pebepHasi packpacka, CHIbHas peGepHas packpacka, CHilb-
HBI XpOMAaTHYECKHI UHAEKC, JIEKCUKOTpapruecKoe MPOru3BeIeHHE.



