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VERTEX-DISTINGUISHING EDGE COLORINGS
OF SOME COMPLETE TRIPARTITE GRAPHS

T. Petrosyan, A. Drambyan

Russian-Armenian University

tigran.petrosyan(@student.rau.am, ardrambyan@student.rau.am

ABSTRACT

A proper edge coloring of a graph G is a mapping f: E(G) —
Zso suchthat f(e) # f(e") for every pair of adjacent edges e and
e’ in G. A proper edge coloring f of a graph G is called vertex-
distinguishing if for any different vertices u, v € V(G), S(u, ) #
S, f),where S(v, f) = {f(e) | e = uv € E(G)}. The minimum
number of colors required for a vertex-distinguishing proper edge
coloring of a simple graph G is denoted by y',4(G). A graph G is
called complete r-partite (r = 2) if its vertices can be partitioned
into r non-empty independent sets V3, ..., V. such that each vertex
in V; is adjacent to all the other vertices in V; for 1 < i <j <.
Problems in which we are interested are particular cases of the
great variety of different ways of labeling a graph. In this paper
we provide lower and upper bounds on y',4(G) for some
complete tripartite graphs.

Keywords: edge coloring, vertex-distinguishing coloring,
chromatic index, complete multipartite graph.
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Introduction

All graphs considered in this paper are finite and simple, and we use
West’s book [6] for terminologies and notations not defined here. Let G =
(V, E) be a graph of order n with the vertex set V = V(@) and the edge set
E = E(G). A k-edge coloring of a graph G is an assignment of k colors to
the edges of G. Let f(e) be the color of the edge e. Denote by S(v, f) =
{f(e) | e =uv € E(G)} the multiset of colors assigned to the set of edges
incident to v. The coloring f is proper if no two adjacent edges are assigned
the same color and vertex-distinguishing proper coloring (abbreviated
VDP — coloring), if it is proper and S(u, f) # S(v, f) for any two distinct
vertices u and v.

The VDP — coloring has been considered in many papers. It was
introduced and studied by Burris and Schelp in [2] and, independently, as
observability of a graph, by Cerny et al., Hornak and Sotak [3]. In [2,4], the
VDP — coloring is also computed for some families of graphs, such as
complete graphs K, bipartite complete graphs K, ,,, paths P, and cycles
C,. The following results has been proved by Burris and Schelp [2]. by
Bazgan et al. [5].

Theorem 1. Let n be any natural number. Then

, _(n if nis odd;
Xva (Kn) = {n +1 if nis even’

Theorem 2. Let m and n be any natural numbers. Then

) _m+1 if n>mz=2;
Xvd (Km,n)_{n+2 lf n:mZZ

The original motivation of study is generalizing results for VDP —
coloring. In this work we obtain some results on vertex-distinguishing
edge colorings of complete 3-,4- partite and multipartite graphs.
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Main results

Let Ky, n,..n, denote a complete r-partite graph with independent
sets V;, V,, ..., V. of sizes nq, ny, ..., n,.. If f is a vertex distinguishing proper
edge-coloring of G and v € V(G), then S(v, f) denotes the set of colors of
labeled edges incident to v.

Lemma 1. For any natural numbers m and n

m+n if n=zm>1;

Xvd (Kl,m,n) ={m+n+1 if n=2m=1.

Proof

Fig. 1. The VDP-coloring of graph Ky, 5, 1.
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Let V(G) = {w1} U P U Q be the vertex set of graph G, where w; is
the 1-partition vertex, P = {py, D2, ..., Pn} is the set of n-part vertices and
Q =1{q1,92,---,qm} 1s the set of m-part vertices and E(G) = {w;p; | 1 <
=i<=njU{wq; | 1<=i<=m}U{pq; | 1<=i<=n&l<=
J <= m} be the set of edges. We shall consider the following three cases.

Casel. m=nandn =1
The algorithm of coloring with m + 2 colors for this case is presented
in Fig. la. For each edge v;v; € E(Kp, 1), define a color f(v;v;) as

follows:
L if v,€qQ, Vj = Py
fwv)=3i+1 if v, €Q, v = wy;
m+2 if v;=npy, v = wy.

Let us prove that f is a vertex distinguishing (m + 2) —coloring of

Km,l,l-
Note that
[Lmlu{m+2} if v, €P;
Sy, f) =412,m+ 2] if v, ew,
{i;i+1} if wv;€qQ.

Therefore, for each pair of vertices v; and v; S(v;, f) # S(vj, f).

Finally, let’s prove that we need at least m + 2 colors for VDP-
coloring. There are m + 1 edges incident to each of the 1-partition vertices,
so we need at least m + 1 colors for labeling edges. As the set of colors
incident to that vertices must be different, we need to use at least m + 2
colors.

Case2.n#mandm > 1

The algorithm of coloring with m + n colors for this case is presented
in Fig. 1b. For each edge v;v; € E(Kp, 1), define a color f(v;v;) as

follows:
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(i+j—1 if v,€Q v €P;

o) = n+i—1 if v, €Q, v = wy;
I Ym+n if v;=npo vj = wy;
i if v EP\p) v =w

By the definition of f, we have

[i,n +i] if vi€eQ;

[Lm+i—1Ju{m+n} if v;=po;
Sy f) = [i—1,m+i—1] if v € Pg{Po}i

[1,m + n] if vieW.

1-partition vertex is connected to m + n vertices from different
partitions, so we need to use at least m + n colors for proper coloring.

Case3. n=mandm > 1

The algorithm of coloring for this case, using 2n colors is presented
in Fig. Ic. For each edge v;v; € E(Ky 1), define a color f(v;v;) as

follows:
i+j—1 if wv,€P, v € Q;
n+i if v; €P\{p.} Vj = Wy
f(viv) ={n if v=pn vj = wy.
i—1 if v €Q\{q} Vj = Wq;
2n if vi=q, Vj = Wq;

By the definition of f, we obtain

_ [ 1Ju{n+1}u{2n} if v; €P;
Swif) = [ln+l—1]U{n+L+1} if v;€Q;
[0,j—1]U[j+1Ln+m] (j€{nm}) if v,eW.

1-partition vertex is connected to 2n vertices from different partitions,
so we need to use at least 2n colors for proper coloring.
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Lemma 2. For any natural numbers m and n, we have:

m+n+1 for n=zm>2Zorn>m=2
de,(KZ,m,n)={ 6 for n=m=2

(a) (b)

Fig. 2. The VDP-coloring of graph Ky, 1, .

Proof
If any partition has 1 vertex, then It comes to Lemma 1.

Let V(G) =W UP U Q be the vertex set of graph G, where W =
{w;,w,} is set of 2-partition vertices, P = {p;,p2,---,Pn} i set of n-part
vertices and Q = {q1,92,...,qm} is set of m-part vertices and E(G) =

{wp; |[ie{l;2}&1<=j<=n}u{wgq; | i€e{;2}&1<=j<=

m}U{piq; | 1 <=i<=n&1<=j <=mjbethesetofedges. We shall

consider the following three cases.
Casel. n>mandm > 2
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The algorithm of coloring with m +n + 1 colors for this case is
presented in Fig. 2a. For each edge v;v; € E(K3,), define a color f(v;v;)

as follows:

l+]—1 lf 'UiEQ, UjEP;
fww)=1G-D-m++i-1 if v€Q, v; € W;
Q- n+D+i—-1 if v,€P, v EW.

Let us prove that f is an VDP-coloring of K, ,, 5.
Note that

[i—1,m+i] if v;€Q;
Sy f)=qli-1n+i] if wv; €P;
[0,j—1lu[j+1Ln+m] GeE{nm}) if v,eW.

Itis easy to see that S(v;, f) # S(vj, f) for any vertices v; and v; from
different partitions.
Case2. n=m2=2

i+j—1 if v,€Q (€[Ln-1]), v €P;

fw)=3j-n+i if vieQ\{m}, v, €W;
n+i if v, €EP, v;EW.

By the definition of f, we have

1,n+ 1] U {2n} if v;=4qqu

,nJU[n+2,2n] if v;=wg

(l

[i—1n+i] if v € Q\{qo}
Sy, f) = [l—ln-l—l—l Jlufn+i;n+i+1 mod 2n} if v, €EP;

[0

[O,n—l [n+ 1,2n] if v;=w,.

The algorithm of coloring for this case, using 2n + 1 colors is
presented in Fig. 2b. It is easy to see that we have VDP — coloring that is
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using set of color [0,2m] that is 2n + 1 colors. But we need at least that
amount of colors that is why equality for chromatic index holds.

Case3. n=m=2

First let’s prove that there is no VDP — coloring of graph K; , , with
5 colors. Our graph has 6 vertices, which are incident to 4 edges from other
partitions. The maximum number of 4-element sets with 5 elements, is

(i) = 5. So at least 2 vertices will have the same set of edge colors. So we

need to use at least 6 colors for proper coloring of our graph. Denote vertices
of our graph by W = {wy, wy,w,, w3, w,, ws} and define coloring f as
fww;) = (i+j) mod 6 foreach w;,w; € W.Itis easy to see that f is
a VDP-coloring for our graph.

Theorem 3. For any natural numbers [, m and n, we have
de’(Kl,m,n) l+m+n

Note that if min(m, n,l) = 1 then it comes to Lemma. 1.

) S n 1 2 I

1|1+1 ... ln‘ HaotlHat2 . Hminl.. I-m
2 [+2 ... Hutl| tnt2 . Itminl2 .. l-mt]
I+m-1 ... I+m+n=2 |l+m+n-1 l+m+tnl2 12
m |I+m ... I+mtn-1| Itmtn 123 e 2 -
1123 n
21234 n+l
I-11 nti-2
1|11+ ntl-1| -

Fig. 3. The VDP-coloring of Ky ., graph with m + n + [ colors.
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Without loss of generality, letl > m >nandV(G) = W UP UQ be
the vertex set of graph G, where W = {w;,w,,...,w;} is set of [-partition
vertices, P = {p1,p,,..-,Pn} 1s set of n-part vertices and Q =
{91,92,---, qQm} is set of m-part vertices. E(G) = {Wipj | 1<=i<=
[&1<=j<=n}U{wq; | 1<=i<=1&1<=j<=m}U
{riq; | 1<=i<=n&1 <=j<=mjis the set of graph edges.

The algorithm of coloring is presented in Fig. 3, where first n
columns are set of edge colors, incident to vertices of n — partition, and
first m rows are set of colors of edges, incident to vertices of m —
partition. The colors set union of m + i-th column with n + i-th row is set
of colors incident to i-th vertex in [ — partition.(i € [1,1]).

For each edge v;, v; € E(K; ), define a color f(v;v;) as follows:

I+i+j—-1 if v,€P, vEQ;
fwivy) = i+j-1 if v,€EP, v; EW;
[+n+i+j—1Dmod(l+m+n)]+1 if v, €qQ, v; EW.

Then we have.

[ll+m+1—1] if v €P;
¢ JILl-m+1ul+m—-il+m+n] if v;€Q;

Wi f) = [1n+l—1] [[+n+il+m+n] if v;€W(@I<m);
[

i-mi—1]U[in+i—1] if vieW(@>m):

We constructed a coloring using m + n + [ colors. It is easy to see
that the edge coloring is vertex-distinguishing. Vertices of [ — partition
are connected with m +n vertices from m — partition and n —
partition, and sets of edge colors for vertices are different by VDP —
coloring definition, so we need to use at least m + n + 1 colors. Thus, we
have m +n+ 1 < x,q'(Kymn)- In general, this result can’t be improved,
because for some 3-partite complete graphs chromatic index is equal tom +
n+ [ (See Lemma. I Case I.).
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Theorem 4. Let |, m and n be natural numbers, such thatm > n +
Il (n>1>1). Then
de,(Km,n,l) =m+n+1

Let V(G) =W UP U Q be the vertex set of graph G, where W =
{wi,w,, ..., w;} is set of [-partition vertices, P = {p;, D5, ..., Pn} is set of n-
partition vertices and Q = {q4, g2, ..., qm} is set of m-partition vertices and
E@) ={wp; |[1<=i<=1&1<=j<=n}U{wgq; | 1<=i<=
[&1<=j<=m}U{pq; | 1<=i<=n&1l<=j<=m} be the set

of graph edges.
1 2 3 n 1 e 122 -1}
1 | m+n-1 m+n-2 m+n-3 - m or num | I-1 1 mtn+l mtn
2 |m+n-2 m+n-3min-d . -2 .. m+a+lm+n m+n-d
m+n+l |2n+i-1 . 2n+3 2n+2 2n+l
m+n 1 2n+l-2 .. 2n+2 2n+l1 2n
m-4|n+d n+3 n+2 2 min 1l .. mib|ntl+4 .. nt7  n+6  ntS
m-3|n+3 n+2 2 mn i m+3| n+l+3 .. ntéd n+ld n+d
m-2|\n+2 n+l m+n i mn-1 .. mHd | n++2 L on+S on+d n+3
m=-1\n+1 m+n 1 m+n-l m+n-l .. m+3 (n+i+d .. n+d n+3d n+2
m |\m+n I min-1 m+n-2 m+n-3 . m+2 | ndl . ont3 on+2 ntl
Y I B Y B . n+l-1
2 |1 1+ N n+l-2
-1l2 3 4 n+l
lfr 2 3 n

Fig. 4. The VDP-coloring of Ky, ., graph with m + n + 1 colors.
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The algorithm of coloring is presented in Fig. 4.
For each edge v;v; € E(Kp, ), define a color f (v;v;) as follows:

mtn—i—2 if v, €P, vEQIi>m—j+2;

1 if vieP, UjEQ,izm—j+2;
fy)) = ym+n if v,€P, Vv EQi=m—j+3;

ll_j+1+i if v,€P, v; € W;

jrnti if v,€eq, UjEW.

Then we have.

(1m+n+1/{(m+n+l—1)mod(m+n+2)} if v;eWw,;

S, f) 41l+l_1U{m+n}U[Tl+[—Jm+n—l] if v, €P;

ln+[]n+l+l—1] [1[]] if wv;€Q.

The algorithm of coloring is shown in Fig.4. Each vertex of [ —
partition is connected with m + n vertices and we have [ > 1, so for VDP-
coloring we need to use at least m + n + 1 colors. In this case we found an
exact value of chromatic index.

Acknowledgment. I would like to thank Petros Petrosyan for
expertise and assistance throughout all aspects of my research.
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BEPIIMHHO-PA3JIUYAIOIIUE PEBEPHBIE PACKPACKHA
MOJIHBIX TPEX/TOJbHBIX TPA®OB

T. llempocsan, A. /Ipamosan
Poccuiicko-Apmanckuil ynusepcumen
AHHOTALUA

Jus rpada G yukuus f: E(G) — N Ha3siBaeTcs p€OepHOM packpackoi rpada
G. Pé6epHas packpacka f rpada G Ha3bIBaeTCs NMPABUILHOW, €CIIH JUIS JTFOOBIX CMEXK-
HBIX pébep e, e’ € E(G), f(e) # f(e'). Ecnu f — npaBuisHas packpacka rpada G u
v € V(G), To 0o603HaunM uepe3 S(v, f) MHOXKECTBO I[BETOB p&OEp, WHIMICHTHBIX
BepuinH V. [IpaBunbHas packpacka f rpada G Ha3bIBaeTCS BEPUIMHHO-PA3INYAONICH,
ecinu Ui MoObIX pasnuuibix BepmuH w, v € V(G), S(u, f) # S(v, f). Haumens-
IIee YXCJIO IIBETOB, HEOOX0ANMOE IJIsl BEpIIMHHO-pa3Inyatomeil pébepHoii packpac-
k1 rpada GHA3BIBAETCS BEPUIMHHO-PA3THIAIONIAM XPOMATHIECKIM HHIEKCOM U 000-
3Hawaercst x,4(G). Tpad) G BepIIMHBI KOTOPON MOXHO TPEJICTABUTE B BUJIE OOBEIH-
HECHHS 7 HE3aBUCHMBIX, HEIYCTBIX MHOXKECTB BepminH V7, ..., V., Takux 910 Kaxkgas
BepiurHa u3 V; cmexHa co Bcemu BepumHamu u3 V; misn 1 < i < j < r HasbiBaercs
MOJTHBIN T — JOJbHBIN rpad. B nanHo# paboTe HalileHbl HEKOTOPBIC BEPXHUE OIICHKH
BCPHIMHHO-PA3INYAIOIICTO XPOMATUICCKOI'O MHACKCA IMOJIHBIX TpéXI[OJ'H)HI)IX rpa(bOB.

KawueBsblie cioBa: packpacka pedep, BEepIIMHHO-PAa3THYAIONINE PACKPACKH,
XpOMAaTHYECKHI MHIEKC, TIOJIHBIA MHOTOIONIBHBIN rpad.
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ABSTRACT

In this paper, we map the set of n-dimensional boolean vectors
onto the set of non-negative integer quartets, where each number
is the count of consecutive boolean pairs (00, 01, 10, 11). Also,
we provide a theorem with constructive proof that shows from
which types of quartets the n-dimensional boolean vector can be
reconstructed. For each type of quartet, we calculate how many
boolean vectors exist that are mapped to the quartet. Furthermore,
we calculate the number of quartets that can be mapped from
boolean vectors of length n. We provide similar theorems and
calculations for cyclical n-dimensional boolean vectors, meaning
last and first values are also considered as a pair. Moreover, we
map n-dimensional boolean vectors to the set of non-negative
integer octads, where each number is the count of consecutive
boolean triples (e.g. 000, 001, 010, ...). As for quartets, we provide
a constructive theorem that shows from which types of octads the
n-dimensional boolean vector can be reconstructed.

Keywords: neighbourings, neighbor pairs, neighbor triplets.
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Let we have a @ € B™ vector: a« has x 11,y 10, z 01, and ¢ 00
neighbourings. Obviously, x +y + z + t = n-1. Let us find out whether
there exists an a vector for the given quad (x,y, z,t), and if yes, find the
amount of them. We will also discuss the case when the vector «a is cyclic;
naturally, x + y + z + t = n for this case.

Theorem 1. For the given quad (x,y, z,t) there exists an a vector if
ly—z|<1landify=2z=0;thenx X t =0.

Proof. First, we will show that if exists a@ vector, then |y — z| < 1.
Let’s assume equal numbers exist in consecutive places (x +t # 0) when
we remove one of them and recalculate x, y, z, t for the resulting vector y
and z will stay the same, and x + t will decrease by one. We will do this till
x +t is zero. Now resulting vector is alternating ones and zeros, e.g.,
101010101. Obviously, |y — z| < 1.

y — z = —1, if the first number of « is one and last is zero

y — z = 0, if first and last numbers of « are equal

y — z = 1, if the first number of « i1s 0 and last is 1

And if y = z = 0 meaning there are no 01 or 10 pairs, the vector is
either only ones or only zeros which is equivalent to x X t = 0.

Now the second part, we should construct vector a thathas x /7,y 10,
z 01 and ¢ 00,

Ify =z =1t =0, then a is a vector with only ones and length x,

Ify =z = x = 0, then « is a vector with only zeros and length ¢,

If y+ z # 0, then we take alternating ones and zeros, that has y 10
and z 01. Then we take some 1 and add x ones, same with t zeros. This
vector will satisfy described conditions.

Let us find out the amount of a vectors corresponding to the quad

(x,y,2,t)

Theorem 2. Let we have a (x,V, z,t) quad. Then the amount of the a

vectors are.:
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1 ,fy+z=0andx Xt =0
CYry1 X Gy Jify—z=1
xCX ' ify=2z=0

y-1 y y
Cx+y—1 X Ct+y + Cx+y t+y—1

cY . xc?

x+y t+y

,ify—z=-1
Proof. For proof, we will use the following lemma:

Lemma: We can represent some number n, as a sum of non-negative
numbers CX¥7L_, ways.

If y+2z =0 and x X t = 0, then there is obviously only one such
vector.

If y —z =1, when x =t = 0 then the alternating vector will be

101010...101010
2y
We want to calculate how many ways we can insert ones and zeros to

have a vector corresponding to (x, y, z, t) quartet. We need to insert x ones
in y places, so we need to represent, using lemma, we know there are

y-1 ; t—1 y-1
Ci+y—1Ways, same with t zeros Cryy_q, so overall there are Ci,,_; X

y-1
City_qWays.

If y —z = —1 we can do the same calculations swapping zeros and
ones and we know thaty =z — 1,
- -1 _ Y y
C)Z<+%—1 X CtZ+zl—1 - Cx+y X Ct+y

If y — z = 0 then there are two possibilities forx =t =0
10101 ...10101 01010...01010

2y+1 @™o
For the first one, we should insert x ones in y + 1 places. There are
cy +y Possible ways, and t zeros in y places, c?, +_y1_1 ways. So, for the first

-1 .
case, we have C,, X C}, +y—1 Possible cases. For the second case, we can

x+y
do similar calculations, inserting x ones in y places and t zeros in y + 1
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places. Overall, we would have C;';;_l X Ctﬁy +Cyy X Cg:r_yl_l possible

ways to construct a vector.

Theorem 3. For the given number n, the amount of corresponding
quads is 3k? + 2k + 2, ifn = 2k + 1 and 3k? — k + 2, if n = 2k.

Proof. First, when n = 2k + 1, here we have 3 possibilities: y — z =
0,y—z=-1y—-z=1

Ify—z=0thenx+2y+z=n—-1=2k (x,y,z=0).

We just need to guarantee that x + t is an even number in [0, 2k]
range, and y can be calculated.

x + z = 0 one possibility

x + z = 2 three possibilities

x+z=2(k—1) 2k — 1 possibilities

x + z = 2k 2 possibilities (x X z = 0 wheny = z = 0)

OveralL 1+3+5+ -+ RQk—1)+2=k? + 2.
Ify—z=1thenx+2z+t=2k—1(x,21t) = 0).

Here we need to guarantee that x + t is odd and in [0, 2k] range.
x + z = 1 two possibilities

x + z = 3 four possibilities

x+z=2k—1 2k possibilities

2+ 4+ -+ 2k = k(k + 1) possibilities.

If y—2z = —1 we will do the same calculations that we did in the
previous case.

So, for n=2k+1 we have k?+2+k(k+1D)+k(k+1) =
3k? + 2k + 2. Similarly, for n = 2k we would have 3k? — k + 2.

Let us formulate the theorems for the corresponding cyclic vectors.
The three theorems presented below will answer these questions. Following
theorems can be proved in the same way as non-cyclic counterparts.
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Theorem 4. There exists a cyclic a vector for the quad (x,y, z,t) iff
(y+z=0andxxXt=0)ory =z

Theorem 5. The amount of the cyclic vectors a corresponding to the
quad (x,y,z,t) is:

1 ,ify+z=0andxxt=0

C;:;_l X C,?:yl_l ,ify =z,

Theorem 6. For the given number n, the amount of the corresponding
quads is k* + 2, ifn = 2k and k* + k + 2, ifn = 2k + 1.

Now let us consider the same problem for the triplets. We have the
vector @ € B™. a has cypg 000, oo, 001 and so on. It is clear that }); ¢c; =
n — 2. Let us find out for what c; values there exists an @ vector. We make
the following denotations:

boo = €100 = Coo1,
bo1 = coo1 + €101 — Co11 — Co10
b1 = €o10 + €110 — €101 — C100/

b11 = €11 — €110

Theorem 7. For the given octad (Cy00,Co01» Co10» Co11s €100s €101
C110, C111) there exists an a vector iff the following conditions are satisfied:

1. If coo1 = C100 = 0, then either cyoop =N — 2, or cyo9 = 0,

2. If c119 = €911 = 0, then either c;11 =n — 2, 0or ¢111 =0,

3 bl <1,

4. only one of the numbers b; can have the value 1,

5. only one of the numbers b; can have the value -1,

Proof. Let us show if the octad that satisfies conditions 1-5 is given,
then we can construct a vector whose corresponding octad will be the given
one. First, we will build a vector that will have ( cy91, €010, Co11, €100
C101,C110) Values, and then we will add 000 and 111 triplets. For
constructions, we will use a directed graph (Figure 1) where each node
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represents a triple and for any v, u nodes vu is an edge if the last two digits
of u are equal to first two digits of v (e.g. (101, 011) is an edge). Each
directed walk in the graph that goes through node j ¢; times for any j

corresponds to some vector a that has hexad (cgyo1,C010, Co11r C100s
€101, C110)- For example, 011 - 110 —» 100 — 001 walk corresponds to

vector 011001.

Figure 1.

Lemma 1: [f Vi b; = 0, then hexad will have this form (x,x —y +
Z,9,X,2,Y), where x,y, Z are non-negative integers.

Proof. From b; definitions we have c;99 = Cpo1, Coo1 + Ci01 =
Co11 + Co10, Co10 + C110 = €101 T €100, Co11 = C110- If We define coo1 =
X,Co11 =Y, C101 =2 and use the above equations, every ¢; can be
calculated.

Lemma 2: [f Vi b; = 0 and some ¢; = 0 (j is one of the following
triplets 011,001,101,010,110,100) then we can construct a vector that
will start with j and will correspond to the given hexad.

Proof. As proof, we will describe a walk on the graph. Each time
going out from node, we decrement ¢ of that node by one. If all ¢, are
positive, we walk on cycle 011 - 110 - 101 - 010 - 100 — 001 until
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one of ¢, becomes zero, if one of the ¢, is already zero, we will skip this
step. Because we decremented each ¢ by one, new b’; values also will be
Zero.

If zero node is one of 011,001,110,100 nodes, using b; =0
conditions and removing zero nodes, we will have a graph that looks like
Figure 2. Now we can walk on this graph from any node resolving all ¢,
values to zero. If we are on v, we go by cycle v, = v; = v, = v, p times,
then we have v, with value ¢ — p and v; with the same value, we do v, —
v3 = v, cycle g — p times. If we are on v, or v, we do half cycle and go to
v, then the second cycle g — p times, then return and complete cycle, and
finally do p — 1 times cycle v, = v; = v, = v, (from v; or v,). Note if
p = 0 then we couldn’t be on v; or v,.

p

p

Figure 1.

If the zero node is 101 or 010, with the same reasoning, we will get
to the graph in Figure 3. Here we have 2 cycles v; = vg - v, > v3 >
v, = vy and v, - v, = V3 = v,. If we are on node v; or node v then we
do half cycle to node v, then second cycle g — p times, then finish the first
cycle and do p — 1 times first cycle. If we are on node v, or node v, then
we do the first cycle p times, then the second cycle g — p times. And finally,
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if we are on node v; we go to v, then to v, then do the first cycle p times,
which we will finish on v, then we go to v; and do the second cycle g —
p — 1 times.

Lemma 3: If Vi b; = 0 and some c; = 0, then we can construct a

vector that will end with j and correspond to the given hexad.
Proof. Let us “mirror” our ¢ values:

1 _ 1 _
Coo1 = €100 Co10 = Co10
! _ ! —
Co11 = €110 €100 = Coo01
! — ! —_
C101 = €101 €110 = Co11

And notice that the graph in figure 1 will be the same (isomorph).
Using the previous lemma, we can construct a vector, which will start with
j, and reverse it.

P q

P q

q-p °

Figure 2.
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Lemma 4: If' Vi b; = 0 and at least one c; is not zero, then we can
construct a vector that starts with 10 and we can construct a vector that
starts with 01.

Proof. From Lemma 1 we know that hexad is (x,x —y +
z,9,x,2,y). If cjp1 or ci099 1S not zero, then using Lemma 2 we will
construct a vector that will start with 101 or 100. Let’s assume c;p; = 0
and ¢;p9 = 0, meaning z = 0 and x = 0. The hexad will take the following
form (0,—y,y,0,0,0), cg19 can’t be less than zero, which means y also
should be zero, which contradicts the given condition. The same reasoning
can be applied to the second case.

Lemma 5: If Vi b; = 0 and at least one c; is not zero, then we can

construct a vector that ends with 10, and we can construct a vector that
ends with 01.
Proof. Let us again “mirror” our ¢ values:

14 i ! —
Coo1 = €100 €010 = Co10
’ _ ’ _
€011 = €110 €100 = Coo01
! — ! —_
€101 = €101 €110 = Co11

And calculate b values for this new hexad

b'o0 = '100 = €"001 = —bgo =0
b's1 = c'go1 + ¢"101 — €'011 — €910 = —b10 = 0
b'10 = c'o10 + €110 = €'101 = €"100 = —b1p = 0
b1y = co11 — €110 = —b11 =0

Conditions for the previous lemma are satisfied, so we can construct
a vector that starts with 10 (01) and mirror it (e.g., 10111 — 11101). This
new vector will end with 01 (10) and correspond to the given hexad.
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Lemma 6: I[f'b; = 1,b; = —1 and we constructed vector, then we can
construct vector for when b; = 1,b; = —1, where X is complement x (e.g.
01 = 10).

Proof- The proof is very similar to the previous, but instead of
mirroring, we use complement.

b'o0 = '100 = €001 = boo
b's1 = c'001 + €"101 — ¢'011 — €010 = D10
b'10 = c’010 + €110 = €101 = €"100 = P10
bi1 = co11 — €110 = b11

We construct for these new values and then complement the result.
Now let us prove the main theorem. From conditions 3-5 and knowing
from the definition that the sum of all b; is zero, we can conclude that there
are A5 + 1 = 13 possible cases.
1. bgg =1,by; = —1.
byo = C100 — Coo1 = 1 therefore c¢qp99 > 0. And by, = cpo1 +
€101 — Co11 — Co10 = —1 meaning either cy1; > 0 or ¢g19 > 0. If
Co10 > 0 we construct vector using lemma 5 that ends with 01 for
hexad (001, €010 — 1, €011, €100 — 1, €101, €110)> obviously
recalculated b; vectors are zero. And then add to the end of the
vector 00, doing so increments ¢;¢ and ¢y, by one. If ¢511 > 0,
from b;; =0 we know that «c¢y;4 =cC110>0, and
(€001, €010, €011 — 1, €100 — 1, €101, €110 — 1), again new b; are
zero, and we can use lemma 5 and construct vector ending with 01,
and then add 100 to the end of the vector.
2. by; =1,byy = —1. It can be proven easily using previous case and
lemma 6.
3. bgo=—1,by; =1.
Then from definitions of b; we know that ¢yo; > 0. Using lemma 4
for hexad (cgo; — 1, €910, Co11> €100 €101, C110) Starting from 01,
we add 0 to the start of the vector.
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10.
11.

b;; = —1,b;p = 1. Lemma 6 and case 3.

boo = 1,b1o = —1.

Then from definitions of b; we know that ¢;o¢ > 0. Using lemma 5
for hexad ( ¢oo1, Co10» Co11>C100 — 1, €101, C110) €nding with 10, we
add 0 to the end of the vector.

b;; =1,b;y = —1. Lemma 6 and case 5.
bOO S _1, b10 = 1.
bOO = C100 — Cgo1 = —1 therefore Coo1 > 0. And blO = Cop10 +

€110 — C101 — C100 = 1 meaning either cy19 > 0 or cy19 > 0. If
Co10 > 0 we construct vector using lemma 4 that starts with 01 for
hexad (cgo; — 1, €010 — 1, €011 €100 C101, C110)- And add to the
start of the vector 00. If ¢;;9 > 0, from b;; = 0 we know that
Co11 = €110 >0, and  (coo1 — 1, €010, €011 — 1, €100, C1015 €110 —
1), again new b; are zero, and we can use lemma 4 and construct
vector starting with 10, and then add 001 to the start of the vector.
b;; = —1,by; = 1. Lemma 6 and case 7.
by1 = 1,bg = —1.
bo1 = Coo1 + €101 — Co11 — Co10 = 1

bio = Co10 *+ €110 — €101 — €100 = 1
From by, we see that either cyp; > 0 or ¢91 > 0. If ¢191 > 0 we
construct vector using lemma 4 that starts with 01 for hexad
(€001 €010» €011> €100, €101 — 1,C110) and add 1 to the start. If
Coo1 > 0, from by, = 0 we know that ¢;59 = €190 > 0, and can do
same for hexad ( cpo1 — 1, €910, €011, C100 — 1) €101, €110) and add
10 to the start.
bio = 1,by; = —1. Lemma 6 and case 9.
byo = 1,b;; = —1.
From definitions, we know that ¢;0o > 0 and ¢;19 > 0. If cyg; > 0
we will start from 001 wusing lemma 2 for hexad
(€001) €010, €011, €100 — 1, €101, €110 — 1), and then add 11 to the
start. If c511 > 0 we will end on 100 using lemma 3 for the same
hexad and add 00 to the end. If cpo; = Cpq; = 0, then from b;
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definitions our hexad looks like this (0, x, 0, 1, x, 1), then our vector
1s11 01 01 ...01 00, where the number of 01 pairs is x, for example
for x = 2, the vector is 11010100.

12. by; = 1,byy = —1. Lemma 6 and case 11.

13. bgy = by; = b1y = by; = 0 is proven in lemma 2.

Now we will add into consideration cyq¢ and cq14. For that, we first
construct vector without them then find 00 or 11 in the constructed vector
and add ¢y times new 0 and c¢;;; times new 1. For example, if cypo =
2,c111 =1 and the vector is 100110, then our new vector will be
100001110. But what if in our vector there is not a 00 pair, then form
condition 1 we know that either c¢yqy = 0 or everything else is zero (oo =
n — 2), same for c;4;.

Now let us prove that for any vector with octad (¢yg0, Co01, Co10s Co11
€100, €101, C110, €111)» conditions 1 — 5 are true.

Conditions 1 and 2 are obviously true, if there is not a 100 or 001,
then either vector is zeros, or there is not a 000 triple, same for 111.

Let us show that |by{| < 1, by = Coo1 + €101 — Co11 — Co10, @ left
neighbour of triplets 011 and 010 can only be 001 and 101, and a right
neighbour of triplets 001 and 101 can only be 011 and 010. Meaning
Coo1 T C101 = Co11 T+ Co10- €Xcept when the vector starts with 01, then
by; = —1, or when vector ends with 01, then by; = 1. The same
conclusions can be applied to by, also to by, and by, if we write them as
boo = Coo0 + €100 = Cooo — Coo1  and  byy = Co11 + €111 = €110 — C111-
From all b; values only one can be —1, and only one can be 1, because only

one triplet is at the start of the vector, and only one can be in the end.
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3AJJAYA O KOJIMYECTBE OJJUHAKOBBIX
HNOCJIIEJOBATEJIbHBIX ITAP B BYJIEBBIX BEKTOPAX

H.A. Xanoansan, K.I. Mapzapan, O.K. Caaxan
AHHOTAIUSA

B nanHoii ctatbe oToOpaxkaeTcsa HabOp n-MepHBIX OYyJIeBBIX BEKTOPOB Ha Ha0O-
PBI HEOTPHUIIATEIIBHBIX LIEJIOYHCICHHBIX KBAPTETOB, Tl KaXI0€ YHUCIO MPEICTABISET
co00ii KOJIMYECTBO MOCIIEA0BaTeNIbHBIX OyieBbix map (00, 01, 10, 11). Kpome Toro,
MIPUBOJNM TEOPEMY C KOHCTPYKTHUBHBIM JJOKa3aTeJIbCTBOM, ITOKA3bIBAIOIIYIO, U3 Ka-
KHX THITIOB KBaPTETOB MOKHO BOCCTAaHOBHUTBH N-MEPHEIN OyneBo BekTop. J{is kaxmio-
r'0 THIIA KBapTETA MBI BRIYUCIISIEM, CKOJIBKO CYIIECTBYET OYJIEBEIX BEKTOPOB, 0TOOpa-
JKaeMbIX B KBapTeT. Kpome Toro, Mbl BEIUUCIIIEM KOJIHYECTBO KBAPTET, KOTOPHIE MOXK-
HO 0TOOPa3HTh U3 OYJIEBBIX BEKTOPOB JUTHHBI N. MBI IPUBOJIUM aHAJIOTUYHEIE TeOpe-
MBI M BBIYUCIICHHUS U1 HUKIMYECKUX N-MEPHBIX OYJIEBBIX BEKTOPOB, I LIMKINYHBIHI
03HAuaeT, 4TO MOCIeJHee U MepBOe 3HAYCHUs TaKKe PacCMaTpPUBAIOTCS Kak Mapa.
Kpome Toro, Mel oToOpaxkaeM n-MepHBIE JIOTHYECKIE BEKTOPH B HAOOp HEOTpHIIa-
TEJBHBIX LIEJbIX OKTAJI0B, I/Ie KaK10€ YUCIIO IPECTaBIsSET COOON KOIHMUECTBO Mocie-
JIOBaTENbHBIX OyleBbIX Tpoek (Hampumep, 000, 001, 010, ...). Kak u mis kBapTeTos,
MBI IIPHBOIUM KOHCTPYKTHBHYIO TEOPEMY, TIOKA3BIBAIONIYIO, 3 KAKUX TUIIOB OKTAIOB
MO’HO BOCCTAaHOBHUTH N-MEPHBIN JTIOTUYECKUIN BEKTOD.

KiioueBble c/10Ba: IIaphl, COCEIHNE Naphl, COCEIHHUE TPOIKH.
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OF CERTAIN GRAPHS
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ABSTRACT

For a given graph G and a proper edge t-coloring a defined on
G, denote by Sumg (v, @) the sum of colors of edges neighboring
v, where v € V(G). In that case, « is called an antimagic edge t-
coloring of graph G, if for every pair of distinct vertices vy, v, €
V(G), Sumg(vy, @) # Sumg(v,, ). The set of graphs G, for
which there exists some t, such that G admits an antimagic edge
t-coloring, is denoted by AM . For any graph G € AM, denote
by wgm(G) the least positive integer t, for which G admits an
antimagic edge t-coloring, and by £,,,(G) the biggest integer t,
for which G admits an antimagic edge t-coloring. In this paper we
obtain some estimations and some exact results on wg,, (G) and
0,m (@) for wheels, some Halin graphs, and complete graphs.

Keywords: antimagic edge-coloring, edge-coloring.

Introduction

Throughout the paper all graphs are finite, undirected, simple and
connected. Let V(G) and E(G) denote the sets of vertices and edges of G,
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respectively. For v € V(G), we define N;(v) as the set of neighbors of v:
N;(v) = {u | uv € E(G)}. The number of vertices in this set is called the
degree of the vertex v and is denoted by d; (v). All the terms and concepts
that are not defined in this paper can be found in [11, 12].

A proper edge t-coloring of a graph G is a surjective mapping « :
E(G) - {1,2,...,t} such that a(e) # a(e") for any pair of adjacent edges
e,e’ € E(G). Consider a proper edge coloring . We define the spectrum
of'a vertex v in the graph G with respect to the coloring a as the set of colors
of edges adjacent to v and denote it by S; (v, a) (S¢(v, @) = {a(uv) |u €
Ng;(v)}). Similarly, we denote by Sumg; (v, ) the sum of colors of edges
adjacent to v (Sumg (v, @) = XLyen,w) @(uv)). In some cases, we will use
the notations S(v, a) (S (v)) and Sum(v, @) (Sum(v)) instead of S; (v, @)
and Sumg;(v, a) respectively if the graph (along with the coloring) is
obvious from the context.

A proper edge t-coloring a of a graph G, for which all the values
Sumg (v, a),v € V(G) are distinct, is called an antimagic edge t-coloring.
If graph G admits an antimagic edge |E (G)|-coloring, then G is called an
antimagic graph.

In 1990, Hartsfield and Ringel conjectured the following:

Conjecture [8]. All simple connected graphs except for K, are
antimagic.

Interestingly, the conjecture remains open even for large classes of
graphs such as trees and bipartite graphs. However, the conjecture has
undergone numerous researches. Here are some significant results: trees
which don’t have any vertex of degree 2 are antimagic [9]; connected k-
regular graphs (k = 2) and their Cartesian products are antimagic [2, 3, 4,
6]; simple cycles, paths with length greater than 1 are antimagic [5, 8, 10].
There are also some results on graphs depending on their minimum degree,
maximum degree or average degree [1, 7].

The conjecture above has been formulated by the authors in the terms
of edge labelings (assignments of edges to numbers 1,2, ..., |E(G)]). This
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paper offers to consider more generalized problem taking into account that
edge labeling is a particular case of edge coloring.

Thus, we introduce a class of graphs AM which contains graphs G
for which there exists some integer t, such that G admits antimagic edge t-
coloring. Then, for any graph G € AM, we denote by wg,, (G) the least
positive integer t, for which G admits an antimagic edge t-coloring, and by
0,m(G) the largest integer t, for which ¢ admits antimagic an edge t-
coloring. Obviously, if the conjecture is true, then AM consists of all
connected graphs except for K,, and for each of those graphs, 02,,,(G) =
E(G)].

Let us consider these particular types of graphs: complete graphs,
wheels, and Halin graphs. Let n be an integer number greater than or equal
to 4. We call W,, = K; + C,,_; a wheel of n vertices. A graph H =T UC,
where T is a tree without vertex of degree 2 and C is a simple cycle
consisting of the leaves of T, is called a Halin graph. If T is a double star,
and each star has n leaves (n > 2), then we will denote the Halin graph by
H,. In the figure 1, you can see examples of H,, graphs for n = 3 (on the
left) and n = 5 (on the right).

g { vy -

Figure 1.

The fact that complete graphs and wheels are antimagic graphs, are
presented as exercises in [8], and can be derived also from theorems in [1],
[2], [3]. The following theorems immediately imply from the latter:
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Theorem 1: For any integer n > 3, K,, € AM and 0,,(K,) =

|E(K,)| =222

Theorem 2: For any integer n = 4, W, € AM and 2,,,(W,) =
|E(W,)| = 2n — 2.

In this paper we consider wg,,(G) parameter for types of graphs
mentioned above, Q,,, (G) parameter for H,, graph, and obtain some results
on their exact values, or lower and upper bounds.

Main results

Lemma: Let G is a graph in AM. Let for some d (1 < d < A(G)),
ng is the number of vertices with degree d in G (ng; > 0). In that case,

W (G) = ["dd"ll +d.

Proof: Let w,,,,(G) = t. Consider any antimagic t-coloring of the

graph G. Consider Sum(v) values for all such vertices v € V(G) for which
d;(v) =d. Since S(v) €{1,2,...,t} and |SW)|=d, 1 +2+--+d =
d(d+1)<5um(v) <(t-d+D+(t—-d+2)++(t—d+d) =

(t—d) d+d(d+1)

lies in [d(d;l), (t—d)-d+

d(d+1) d(d+1)

It means that the set of possible values for Sum(v)
d(d+1)

], so the number of distinct values

cannot exceed (t — d)d + 1= (t—d)d + 1. It implies

ng—1

thatng < (t —d)d + 1 => t>[

]+d.

We use the lemma above as the main lower bound for wg,,(G)
parameter in the following theorems. For the upper bound of Q,,,,(G) we
use the obvious fact Q,,,(G) < |E(G)|, which implies from the surjectivity
of the proper Q,,(G)-coloring. For the upper bound of wg,,, (G) as well as
for the lower bound of ,,,(G) parameter we prove our results by
constructing respective examples.
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Theorem 3: For any integer n > 4, W,, € AM and
5, ifn=4
Wam(Wn) = {n ~1, ifn=5
Proof: Firstly, let us prove that
5, ifn=4
Wam (Wn) 2 {n 1, ifn=5
In order to do that, we use the lemma considering d = n — 1.
If n = 4, all the vertices of the wheel have a degree of d =n—1 =

3, so ng = 4. Hence, wg,(W,) = [4;—1] + 3 = 4. Note that it is also

impossible to color with 4 colors keeping all Sum(v),v € V(G) values
distinct. Suppose that there is such coloring and let us consider spectrums
of all vertices of the wheel. The number of subsets with cardinality d = 3
ofthe set {1, 2, 3,4} is exactly n; = 4. So the set of spectrums of all vertices
should be {S(v) |v € V(G)} = {{1,2,3},{1,2,4},{1,3,4},{2,3,4}}. But
in this set, each number appears 3 times, whereas for any proper edge
coloring each color ¢ must persist in that set twice the number of edges
colored with ¢ times. It implies that an antimagic coloring with 4 colors
doesn’t exist, s0 wgy, (W,) = 5.

If n = 5, one of the vertices has a degree of n — 1, and others have a
degreeof 3(3<n—1),son; =1=> wy,(W,) = [E] +n—-1=n-1.

So the lower bound of w,,, (W) is proven and in order to complete
the proof we need to bring examples with corresponding w,, (W,,) values.

Let us denote the vertices of W, with vy, v,, ..., v, and enumerate
them in such order that E(W,) ={v,v;|i=2,..,n}U{vvip | i =
2,..,n—1} U {v,v,}.

For n = 4, we construct the coloring « in the following way: Say that
a(v1vy) = 1, a(v1v3) = 2,a(vv,) = 5, a(v,v3) = 3, a(v3v,) =
4, a(v,v,) = 2 (figure 2). It is easy to see that the coloring is an antimagic
5-coloring.
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Figure 2.

For n > 5, to construct the examples of colorings we consider two
cases: n £ 1 (mod 3) andn = 1 (mod 3).

1. n%1(mod3)

In this case we construct the required coloring « in the following way

(figure 3a):
a(viv)) =i—1(@{=23,..,n),
a(wivip) =i+1({(=2,3,..,n—2),
a(v,_1vy) =1, a(v,v,) = 2.
SON o (v) 5
N o A

Figure 3.
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Since a(v,v;)) =i —1(i = 2,3,...,n), all the colors from 1 ton — 1
appear in the coloring, so the mapping is surjective. It is also easy to see
that the adjacent edges have different colors, so « is a proper edge n — 1-
coloring. The spectrums of the vertices will look like this:

SWn(vl, a) ={1,2,..,n—1},
SWn(vl-, a)={i—1,i,i+1}(i=23,..,n—2),
Sw,(Vn—1,@) ={n—-2,n—-1,1} Sw, (vp, @) = {n—1,1,2}.

To prove that  is an antimagic n — 1-coloring, it remains now to
calculate the Sum(v;) foreach i € {1, 2, ..., n} and make sure that they are
pairwise distinct.

nn—1)
Sumy, (vy,a) = —
Sumy, (v,a) =3i((=2,3,..,n—2),
Sumy, (Vp_g, @) =2n—2,  Sumy, (v,,a) =n+ 2.

The following expressions show that Sumy, (v, @) is different from
the others:

nn—1)
n=5=>Sumy, (v,a) = TZ 2n>2n—2
= SumWn(vn—ll 0_’),
nn—1)
n=5=>Sumy, (v,a) = — > 2n > n+ 2 = Sumy, (v, ),

n=5=> SumWn(vl, a)=10#3i(i=2,..,n—2),
n=6=> SumWn(vl, a)=15#3i(i=2,..,n—2),

nn-1
n =7 =>Sumy, (vy,a) =¥2 3In>3i(i=2,..,n—2).

It is obvious that Sumy, (v;, a) = 3i (i = 2,3, ...,n — 2) values are
pairwise distinct and also differ from Sumy, (v,_;,@) =2n—2 and
Sumy, (v, @) =n + 2sincen # 1 (mod 3). Finally, 2n — 2 > n + 2, so
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all Sumy, (v;,«) (i =1,..,n) are pairwise distinct and the coloring is
antimagic.
2. n=1(mod3)
In this case we construct the coloring f in the following way (figure
3b):
Bwv;) =i—1((=2,3,..,n),
Bwiviy) =i+1({=23..,n—2),
B(n-1vn) =3, B(vnvy) = 2.

Obviously, the coloring is a proper edge n — 1-coloring.

Sumyy, (v, B) = @'

Sumy, (v;,B) =3i (i =2,3,..,n—2),
Sumy, (v,_1,B) =2n,  Sumy, (v,,f) =n+4.

Similarly, taking into account the n > 7, it is easy to see that the
coloring is antimagic.

Theorem 4: For any integer n = 2, H,, € AM and

_ 5, ifn=2
Wam (Hn) = {n +2, ifn=3

Proof: Let V(H,) = {vy, vy, ..., Vango} and E(H,) = {v;vi4q | i =
1,2,..2n = 13U {vype1v; i = 1,2, ..., n} U{vpp v li=n+1,n+
2, ..., 2n} U {v2n V1, Van41Van+a}-

Firstly, we prove that

5, ifn=2
>
Oam (Hn) 2 {n +2, ifn=3

We use the lemma with d = n + 1. For n = 2, n; = 6 since each

vertex will have a degree of 3, which implies wg,,, (H;) = [ndT_ll +d=
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= +3=2+3=5Forn=3.d,,w)=30=
1, 2, ey Zn), dHn(v2n+1) = dHn(v2n+2) =n+1= d => Ng = 2 =>
Wam (Hy) = [E]+n+1 =n+2.

Now we show examples in which the lower bound is reachable. For
n = 2 and n = 3 examples are shown in the figure 5.

Figure 4.

Forn > 4, we consider three separate cases and construct the coloring
a depending on the remainder of n by 3.
1. n=1(mod 3)
a(viviz)=i((=12,..,n—1),
a(iviy) =2n+2—-i(i=n+1n+2,..,2n—-1),
A(Wopev) =i +1({=12,..,n—1),
AWopsav) =2n—i(i=n+1,n+2,..,2n—-1),
A(VpVns1) =1+ 2,a(W2v1) = 1, a(Wons1Vn) = 1, a(V2p42V20)
=n+2,
a(Want1Vzns2) =N+ 1.
2. n=2(mod 3)
a(vvip) =i(i=12,..,n),
a(iviy) =2n+2—-i(i=n+1n+2,..,2n-1),
A(Wonev) =i +1({=12,..,n—1),
A(Wopsov) =2n—i(i=n+1,n+2,..,2n—1),
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a(venvy) =n—1,a(Wani1vn) = 1, a(Vznys2V2n)
=n+1,a(Vn41Vons2) =0+ 2.
3. n=0(mod3)
a(viviy) =i(i=12,..,n),
aiviy) =2n+2—-i(i=n+1n+2,..,2n-1),
A(Wypv) =i +1(@(=12,..,n—-1),
A(Wyniavi) =2n—i(i=n+1,n+2,..,2n—1),
a(Wanv1) =N — 2,aWap41Vn) = 1+ 2, a(Vani2V2n)
=N, a(Van41Vans2) =0+ 1.

Theorem 5: For any integer n > 2, ,,,(H,) = |E(H,)| = 4n + 1.
Let  V(Hy) ={vy, V2, ., Vans2} and  E(Hp) ={vvi, |i=
1,2,..2n = 13U {vpnvi i =12, ..,n}U{vppvi li=n+1,n+
2, ..., 2n} U {vy,V1, Vony1Vans2}- It is sufficient to construct an antimagic
|E(H,)| = 4n + 1-coloring of H,, (again we denote it by a):

a(vivip) =4, =12,..,2n = 1), a(vnv1) = 2n, a(Vons1Vane2)
=4n+1,
A(Woppv) =4n+1—-i(i=1,2,..,n),
aA(VypsaV) =4n+1—-i(i=n+1,n+2,..,2n).

Obviously, the coloring corresponds to the required conditions.
In the figure 6, you can see the illustration of the coloring for Hs.

TN 5 TN
4 L5 ) { V6 | 6
TN N TN
(Ve / \ 7./’“7 )
| \ A -

3/ ‘<\\1 16 15 ;(;,/) /7

v/ i | \
_/ >,-L 1 \

; X P
|/v3\) 1—8 40 ]\ 21 j\“l’l \)' 1— 1:/ vg |
./ N S - N4

< D~ - < - _
/\;7( 20 ‘ i 11 f}r;'\\
2 | \ | 9 |
\. /L\\ ,L\ L J
— ~— TN —
1 ("L’l)—\' vig | 9
N 10 N4

Figure 5.
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The two theorems above show that the graph H, (n = 2) is an
antimagic graph and we have found the exact values for the parameters
Wam (@) and 2,,,(G) of this type of graph.

Theorem 6: If n > 3 is an odd number, then wg,, (K,) = n.

Proof: Using the lemma (d =n — 1, ng = n), wem(K,) = [Z—:ﬂ +
n—1=n.LetV(G) = {vy,Vy, ..., v, } and let us construct the mapping a
as follows: for each v;, v; (i # J), a(v;v;) = ((i +j) mod n) + 1, where
a mod b denotes the remainder of division of a by b.

Obviously, the mapping is subjective. Suppose that there are adjacent
edges with the same color. It means, that there are 1 < i, j, k < n pairwise
distinct indices for which a(vivj) = a(v;vy). In that case, ((i +
j)modn)+ 1= ((i+k)m0dn)+1 =>(i+j)modn=(+
k) mod n => ((i+j)—(i+k))5n=> (j—k):in, but since 1 <j #
k <n, it leads to a contradiction. So a is a proper n-coloring. For the

spectrums of vertices we have S(v;) = {1,2,...,n}\ {2imodn+ 1} (i =

n(n;_l) — ((2i mod n) + 1), and since n is odd,
(2i mod n) # (2j mod n) ifi # j. o

1,2,...,n), so Sum(v;) =

Theorem 7: If n = 4 is an even number, and if A k € Z, such that
n =12k + 2, then wy,(K,) =n + 1.

Proof: Consider a graph K,, where n satisfies the conditions of the
theorem (V(K,) = {v, vy, ...,v,}). We prove that it is impossible to
construct an antimagic n-coloring of graph K,,. Since there are n vertices,
where spectrum of each vertex should be unique, the set of spectrums should
be the following: {S(v;)|i=12,..,n}={{12, ... n}\{i}|i=
1,2,...,n}. Here, each number appears in n — 1 sets, which leads to a
contradiction since each color ¢ must persist in that set twice the number of
edges colored with ¢ times. Hence, wg,(K,) = n + 1. We divide the rest
part of the solution into two cases:

1. Ak €Z n=12k + 8.
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In this case we define the coloring £ in the following way: for each
v; and v; (0 # j), ﬁ(vivj) = ((i +j)mod (n+ 1)) + 1. It is easy to see
(n+1)2(n+2) _ (i +
1) —((2imod (n+1))+1) (i =1,2,..,n). Those values are pairwise
distinct iff i + (2i mod (n + 1)) are so (i = 1,2,..,n). When 1 < i <2,

that B is a proper n + 1-coloring and that Sum(v;) =

the latter equals 3i, wheng < i < n,itequals 3i —n — 1. Since either n =

6k or n = 6k + 4 for some k € Z, 3i —n — 1 is not divisible by 3, so the
values Sum(v;) are unique, which implies that the coloring is an antimagic
n + 1-coloring.

2. 3k €Z n=12k + 8.

Consider the following mapping:

1, ifi+j=3,

1, if i+j=n+ 3,min(,j) is even,

B(vivj) =<2, ifi+j=n+ 3,min(i,j) is odd,
Li+j—1, ifi+j<n+3,
i+j—1-—n, otherwise.

Considering the colors of neighboring edges of vy, v; (2 <i< g +

1) and v; (2 +2<j< n) separately, it is easy to derive that the mapping

is a proper n + 1-coloring and the respective values of Sum(v;) for i =
1, 2, ..., n are pairwise distinct.

Theorem 8: If n = 12k + 2, k > 0, k € Z, then Wy, (K,) < n + 2.
Proof: It is sufficient to construct an antimagic (n + 2)-coloring (let
us call it y) of K,, when n satisfies the theorem conditions. We define y in
the following way:
y(vivy)
n 3n
_jn+2, ifi+j=5+10ri+j=7+1,
(G +j)mod (n+1))+1, otherwise.
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Let us calculate for each vertex which colors are not present in its

neighboring edges. It is easy to see that fori = 1, 2, ..., g, the missing colors
o n+2, ifi="2,
in neighboring edges of v; are i + 1,2i + 1, and {,, * " For
2 + 2, otherwise.
i = g + 1,% +2,..,n, the missing colors are i+ 1,2i—n, and
3n+2
4

§+ 1, otherwise.

n+2, ifi=

)

For each v;, the missing numbers are distinct,

moreover, for each v; and v; (i # j), the sums of missing numbers are

distinct, so y is an antimagic (n + 2)-coloring.
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Ob AHTUMAT'MYECKUX PEBEPHBIX PACKPACKAX
HEKOTOPBIX TPA®OB

I. Mukaenan
Epesanckuii I'ocyoapcmeennuwiii ynusepcumem
AHHOTALUSA

g nannoro rpada G v NpUBEACHHONW Ha HEM MpPaBUIIbHON pedepHOi t-pac-
Kpacku a, 0003HauuM uepe3 Sumg (v, &) cymMMy IBETOB peOep HHIIUACHTHBIX BEPILH-
He v € V(G). Torga a Ha3pIBaeTCs aHTUMArkHdeckoi pebepHoil t-packpackoi rpada
G, ecnu JUIA KaXIOM TMapbl pasiUuYHBIX BEpINHH vy, V, € V(G), Sum;(vy, a) #
Sumg (v,, ). MHokecTBO TpadoB G, Uisi KOTOPBIX CYIIECTBYET HEKOTOPOE IIE0e
quciIo t Takoe, 9To G JOMyCKaeT aHTHMAarnieckyro pedepHyro t-pacKpacky, 0003Ha-
yaetcs yepe3 AM . Jlns npousBoibHOTrO rpada G u3 MHOXecTBa AM, 0003HaYNM
qepe3 Wy, (G) HauMeHbIIee TON0KUTEIRHOE TIeTI0e YUCTIO ¢, It KoToporo G momyc-
KaeT aHTUMaru4eckyro peOepHyro t-packpacky, a uepes {2,, (G) HanbombIee nenoe
yucno t, Ans KoToporo G JOMyCKaeT aHTHMMAaruyeckyro pedepHyro t-packpacky. B
JIaHHOU paboTe HaMeHBI HEKOTOPHIE OIICHKU M HEKOTOPHIE TOYHBIE Pe3yJIbTaThI I1apa-
METPOB Wy (G) ¥ Qg (G) 15t KONEC, HEKOTOPHIX XaluH Ipad)oB U MOJTHBIX IpadoB.

KnroueBble cji0Ba: aHTIMarneckasi pedepHasi packpacka, pedepHasi packpacka.
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COMPARISON OF DATA MATCHING METHODS
ON BIOMEDICAL DATASETS

T. Galstyan
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ABSTRACT

We study the efficiency of recently developed state-of-the-art
entity resolution methods on real-life biomedical datasets. We
first formalize the entity resolution problem, also known as dataset
matching. We consider following matching problem settings:
without outliers, outliers in only one dataset, outliers in both
datasets. We proceed to analyze and carefully preprocess
biomedical dataset pairs considered in our experiments. We show
that recent algorithms constantly outperform the original greedy
algorithm in all settings. We also examine a newly proposed
procedure which estimates the unknown number of inliers with no
additional information and we successfully show that algorithms
using this estimation procedure almost match the performance of
the algorithms which were given the true number of inliers as an
input.

Keywords: entity resolution, record linkage, single-cell
transcriptomics, spatial proteomics.

1. Introduction

Dataset matching, also known as record linkage or entity resolution,
is a problem of finding the same entities across different datasets. This task
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arises in many practical applications such as object detection, camera
position estimation, biomedical data analysis, etc. [1, 2]. In object detection,
dataset matching is used to match local keypoint descriptors on different
images, assuming they contain the same object. Ideally, two descriptors are
matched if they represent the projections of the same 3D point in two
images.

In single-cell biology research, it is common to have datasets
containing measurements on overlapping sets of cells, with similar (but
different) experimental protocols and post/pre-processing steps. So it is both
possible and non-trivial to match entities from different biomedical datasets
to get an enhanced description of each entity.

In this paper, we use the following statistical framework to tackle the
dataset matching problem.

Let X = {X;,X,,...,X,}and X* = {X*,X*,, ..., X* }be sets of
d-dimensional vectors of sizesn,m > 1, respectively. We will assume that
the data is generated according to the following model:

Xi =06, +dé,i =1,...,n
X% = 0% + 0% j=1..m (1)

Here ® = {04,...,0,} and 6% = {6%,,...,0% } are sets of original

unobserved vectors, & and & j are i.i.d. standard Gaussian random d-

dimensional vectors and o is the noise magnitude. We only observe the
noisy sets X and X#. We also assume that there is an underlying injective
mapping " from the set S* c [n] (where [n] = {1,2,...,n} ) of size k*
(k* < n) into the set [m]: ©*:S* = [m] such that for all i € §*,0; =
H#n*(i). We will call the observations from the set S *and their corresponding
matches (the support and the image of *) inliers and the rest of the vectors
outliers. Our objective will be detecting unknown m* as accurately as
possible having access to only X and X¥. In this paper, we will concentrate
on biological datasets. In particular, we will analyze two pairs of datasets, a
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pair of single-cell RNA sequencing datasets and a pair of proteomics
datasets. We will discuss datasets in detail in Section 2.

Matching problem under condition (1) has been studied first by
Collier and Dalalyan [3] under more strict restrictions: n = m, no outliers.
The extension of this work on a more general case in the presence of outliers
was done in [4] and [5]. Chen et al. [6] proposed a method called LAPS
(Linear Assignment with Projected Signals). Chen et al. showed that LAPS
can be successfully applied on present-day biomedical datasets.

The goal of the current paper is to further analyze several state-of-the-
art data matching algorithms on real-life biomedical datasets. The rest of
the paper will go as follows: first we will discuss datasets and matching
algorithms in detail in Sections 2 and 3, then Section 4 will discuss
experiments and results.

2. Experimental Setup and Datasets

This section describes different problem settings of the matching
problem we included in our empirical evaluation and steps we took to
process the data to ensure that they are consistent with the problem settings.
We can divide experiments performed in this paper into three categories: no
outliers (k* = n = m), outliers in only one set (k* = n < m) and outliers
in both sets (k* < n,k* < m). We used two pairs of biological datasets.

2.1 Single-cell RNA sequencing data

The first dataset pair under consideration is a pair of single-cell RNA
sequencing datasets from human pancreatic islets. It comprises a dataset
(referred as Celseq)) obtained using CEL-seq2 technology [7] and a second
one (Smartseq) obtained with Smart-seq2 [8]. Celseq data has 34363 RNAs
measured across 2285 cells, while Smartseq has 26178 RNAs measured
across 2394 cells. Both raw datasets can be found in SeuratData package of
R [9]. We applied the following standard preprocessing steps identically to
both Celseq and Smartseq datasets using Python Scanpy package [10]. First,
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we filtered out RNAs that appeared in less than 25 cells; this filtered around
half of the RNAs. Then we normalized both datasets across cells with a
target count sum of 10000, meaning that after normalization each cell had
10000 total counts over all RNAs. Then we proceeded to select 5000 most
active RNAs per dataset and filtered out the rest. As the RNA names are
available in the data, we selected RNAs which appear in both datasets and
again filtered out the rest. We ended up with two sets of sizes 2285 x 2808
and 2394 x 2808 respectively. Top 10 most active RNAs per dataset are
shown in Fig 1.

CEL-seq2 Smart-seq2

w! —— | ! A ——
MTRNR2LL e |—-—|_.. . aw - )
MTRNRZLE o o— cHoA _—|
ssT } - } e crso }_._|_ .
HSPaOAAL Al —— .
o] e - —

o0 0.2 0.4 06 08 0.0 05 10 15 2.0
% of total counts % of total counts

Figure 1. Highest expression RNAs for Celseq (left) and Smartseq (right) datasets.

As there is no ground-truth one-to-one matching for cells in these
datasets, we worked on cell-type level, meaning that we assumed a match
is correct if it matches cells of the same type. Human annotation of cell
types is available for both datasets. As cell types are not perfectly aligned
in datasets we performed following type-balancing steps. For each type,
first we checked which dataset has fewer cells of this particular type, then
we randomly downsampled cells from the other dataset of that type to leave
exactly the same number of cells per type. Eventually we achieve two
datasets of size (1935 x 2808). Cell type distributions after balancing are
displayed in Fig 2. This corresponds to the description of the experiment
with no outliers (k = n = m), as we will aim to match cells and all of
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them can theoretically match a cell of the same type (no outliers). Steps for
transforming this data for other setups will be discussed in later sections.
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Figure 2. Number of cells-per-type for murine spleen proteomics (left) and human
pancreas (right) dataset pairs.

2.2. Murine Spleen Proteomics data

Second pair of datasets was obtained from murine spleen using CITE-
seq [9] and CODEX [11] technologies. As different technologies surface
different biological information (e.g. CODEX provides spatial coordinates
of collections of cells on the slice of tissue cut) aligning this kind of datasets
can serve as an easy method for enriching results of biological experiments
with knowledge from existing datasets. Raw CITE-seq dataset contains
measurements of 208 proteins in 7601 cells, while the CODEX dataset
measures 31 proteins in 48332 cells. Both raw datasets can be downloaded
from the github page of MARIO! proteomic data integration pipeline.
Similar to the previous pair, preprocessing and celltype-balancing steps
were applied to CITE-seq and CODEX datasets resulting in a pair of sets of
size (3381 x 28). CITE-seq-CODEX pair is significantly harder to match

! https://github.com/shuxiaoc/mario-py
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because first its lower-dimensional (d = 28) and signal-to-noise ratio here
is significantly lower. For this pair also, evaluation was done on celltype-
level, as it’s the only human-annotated label for the data. Distribution of the
cell types after balancing are presented in Fig 2.

3. Data Matching Algorithms

The most straightforward approach to trying to recover m”* is to match
vectors from X to X* greedily. There are several greedy algorithms for this
problem. The most simple and easy-to-implement algorithm works as
follows: vectors are taken from the set X one-by-one, in original order, and
matched to their closest vector from X# by some predefined distance
measure. This algorithm is used in OpenCV (as BFMatcher) [12] to match
keypoint descriptors of images. In this work we used a slightly more
sophisticated greedy algorithm, which on every step matches the pair of

vectors X; € X and Xj# € X* such that the distance between them is
minimal (argmin ||Xi — Xj#|| ). Data points matched at each step are
Lj 2

not considered in the following steps. Notice, the only difference is that the
second algorithm doesn’t go over the set X in some random or pre arranged
order, but takes the vector X; which has the closest possible match. We
chose the second algorithm to use in this work because it doesn’t depend on
the ordering of the set X and works consistently while still achieving similar
results, being fast and straightforward to implement.

Another matching method from [4] can be defined by the following
optimization problem:

2
#AlsS € argmin ¥} ||Xl- - X,,(i)#” )

2
We will call (2) Least Sum of Squares (LSS) estimator. LSS can be

computed using the Hungarian algorithm [13]. It is a polynomial-time
algorithm (O (n3)) to solve the assignment problem.
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The greedy algorithm can be easily extended to the cases with outliers.
The Hungarian algorithm has a natural extension for the case where there
are outliers on one side (k = n < m) [14]. We will discuss the extension
to the general case, where two sides contain outliers below.

3.1 Assignment as a Minimum-Cost-Flow Problem

As described in [5], if we want to solve (2) for matchings of fixed size
k <n, we can reformulate (2) as a minimum-cost flow problem on a
weighted directed bipartite graph with two additional nodes. The graph is
constructed as follows. First, all vectors from both X and X* are assigned
a node in the graph. All nodes of vectors from X are connected to all nodes

from X* with edges with cost of ||Xl- -X j#|| and capacity equal to 1 for
2

all pairs i,j, creating a bipartite graph. Then two additional nodes are
created: a source node and a sink node. The source node is connected to all
nodes of X with edges of capacity 1 and zero cost. Similarly, the Sink node
is connected to all nodes of X* (edges directed to the sink), again with 1-
capacity zero-cost edges. The resulting graph is shown in Fig. 3.

Figure 3. lllustration of the flow network corresponding to the optimization problem
described in (2). Illustration from[5].
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4. Experimental Results

First experiment is performed in the simplest setup of no outliers in
both datasets. As we have two pairs of datasets of equal sizes, all entities
were matched. The results are shown in Fig. 4 for the Celseq-Smartseq pair
and in Fig. 5 for the CITE-seq-CODEX pair. One can observe that LSS
consistently outperforms the greedy algorithm on both pairs. The second
experiment is designed the following way to measure algorithms’
performance in case of the presence of outliers in one of the sets. To ensure
the presence of outliers we select one specific cell type and completely
remove cells of that type from one of the datasets: Smartseq in human
pancreas pair and CODEX in the murine spleen proteomics pair. By doing
so we can guarantee the presence of outliers in the opposite set, because all
of the corresponding matches of a certain type have been removed. The
results are presented in Fig. 6 and Fig. 7 for each pair of datasets
respectively.

Greedy Matching (Accuracy = 95.814%) LSS Matching (Accuracy = 97.416%
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Figure 4. Confusion matrices for RNA-seq dataset pair matchings (greedy algorithm on
the left-hand matrix, LSS on the right-hand). Celltype-level accuracy is reported.
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Greedy Matchmg (Accuracy = 62.289%) LSS Matching (Accuracy = 67.022%)
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Figure 5. Confusion matrices for murine spleen proteomics dataset pair matchings
(greedy algorithm on the left-hand matrix, LSS on the right-hand). Celltype-level
accuracy is reported.

Again we see LSS consistently outperforming the greedy algorithm
in terms of matching accuracy regardless of the outlier cell type. On the
other hand, the outlier detection accuracy is nearly the same for both
algorithms in all of the cases. Outlier detection accuracy here means the rate
of outliers left out of the matching (as k = n < m, there will be (m — k)
vectors from X* left out of a chosen matching 7 of size k).
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Figure 6. Left: The accuracy of different matchers on human pancreas dataset pair in
case of one outlier cell type in Celseq dataset (removed from Smartseq).
Right: Percentage of outliersin Celseq dataset not included in the matching, higher the
better.
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We chose top cell types by the number of occurrences for this
experiment: left out type ‘alpha’ for the first pair because it constitutes
almost half of the dataset.

The third and last experimental setting is similar to the previous one,
except that there are outliers in both X and X* (k < n,k < m). In this
case, we will be removing all cells of a fixed cell types from both X and X#,
one per dataset. The main point of interest of this experiment is to evaluate
the algorithm for estimating the number of inliers k proposed by [5] in
Section 3.
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Figure 7. Left: The accuracy of different matchers on murine spleen pair in case of one
outlier cell typein CITE-seq dataset (removed from CODEX).
Right: Percentage of outliersin CITE-seq dataset not included in the matching (left
unmatched), the higher the better.

As the murine spleen dataset pair has a very low signal-to-noise ratio
and is very far from satisfying the constraints of Theorem 1 of [5], here we
concentrate only on RNA-sequencing datasets. For a fair comparison, we
did not compare results with the estimated number of inliers with vanilla
LSS / Greedy algorithms, as they are forced to match every vector
(including outliers). We compare the algorithm with the estimated number
of inliers with LSS / Greedy forced to match k* overall entities (correct
number of inliers). This will put the initial algorithm in a disadvantageous
position as it will have less initial information than the algorithms that will
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know the correct number of inliers. Nevertheless, as one can see on Fig 8.,
even with the disadvantage the algorithm from [5] manages to achieve
similar (even sometimes better) results.
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Figure 8. The comparison of an algorithm unaware of the number of inliers
(MinCostFlow estimated k) and algorithms which had the correct number of inliers as
input.

All three methods achieve overall mean accuracy of 91.8% — 92.1%.
Results of this experiment provide additional experimental verification of
the methods proposed in [5] and show that they can be used on real-life
datasets with realistic settings, even without any prior knowledge about the
true number of inliers / outliers.

5. Conclusion

We have analyzed the problem of dataset matching in real-life
settings. Our analysis, carried out on two biomedical datasets, showed that
the algorithms based on the LSS-Min Cost Flow methodology consistently
outperform greedy algorithms in simple cases of no outliers and outliers in
one of the sets. Furthermore, the reported results demonstrate the
consistency of the procedure of estimation of the number of inliers. Indeed,
its results are comparable with the oracle algorithms that use the correct
number of inliers. Therefore, a high level conclusion of this paper is that the
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algorithm obtained by combining the LSS-Min Cost Flow methodology
with the model selection approach can be recommended for use in practice.
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CPABHEHME METO/IOB PASPEIIEHUS CYIIIHOCTEM HA
BUOMEJINIINHCKHUX HABOPAX JTAHHBIX

T. 'ancman
AHHOTALMS

B nanHOl cTathe u3ydeHa 3((PEKTUBHOCTh COBPEMEHHBIX METOJOB pa3pere-
HUS CYITHOCTEH Ha peabHBIX Habopax OMOMEINITMHCKUX AaHHBIX. CHavana MbI (op-
MaJi3yeM MpoOieMy paspelleHns CYIIHOCTeH, Takke U3BECTHYIO KaK «COMOCTaBIIe-
HUE JIaHHBIX». MBI paccMaTpuBaeM CJeAyolie MOCTAaHOBKY 3aja4l COIIOCTaBIICHUSL:
0e3 BEIOPOCOB, BHIOPOCHI TOJIBKO B OJTHOM Ha0OpE JaHHBIX, BRIOPOCH! B 000MX Habopax
JaHHBIX. MBI aHATM3UPYEM W MPEIBAPUTEIBHO TIIATENEHO 0OpabaThiBaeM Maphl Ha-
00pOoB OMOMEANIIMHCKIX JAaHHBIX, PACCMAaTPUBACMBIX B HAIINX SKCIEPUMEHTaX. MBI
MTOKA3bIBacM, YTO COBPEMEHHEIC aJITOPUTMBI IIPEBOCXOIAT UCXOIHBIN JKAIHBINA airo-
PHUTM BO BceX HacTporkax. Mbl TakKe paccMaTpUBaeM HEJaBHO MPEI0KEHHYO TPOo-
Lenypy, KOTopas OLCHHBAST HEM3BECTHOE KOJIMYECTBO BHIOPOCOB 0O€3 JIOMOIHUTEIb-
HOM nH(OPMAINHI, U MBI YCIIEIITHO MTOKa3bIBAEM, YTO aJITOPUTMBI, HCIIOJIB3YIOIINE 3Ty
NpoLEeNypy OLEHKHU, OYTH HE YCTYNaloT N0 3(QPEKTUBHOCTH alrOpUTMaM, KOTOpbIE
MOJTYYHJIN UCTUHHOE KOJIMYECTBO BEIOPOCOB B KAYECTBE BXOJHBIX TAHHBIX.

KuiodeBble ci10Ba: paspelnieHue CynHOCTeH, COoCcTaBIeHHe JaHHbIX, TPAHCK-
PHUINTOMHUKA OAWHOYHBIX KJIETOK, CTPYKTYpHAasI IPOTEOMUKA.
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ABSTRACT

An edge coloring ¢ of a graph G is called strong if any two
edges at distance at most 2 receive different colors. The minimum
number of colors required for a strong edge coloring of a graph G
is called strong chromatic index of graph G and denoted by
Xs (G). Hamming graph H(n,m) is the Cartesian product of n
complete graphs K,,,. In this paper, for Hamming graphs H(n, m),

- - 2 -
(2n 1)12n(m 1) < )(;(H(Tl, m)) < nm<(m

we show that 1). Besides

we construct strong edge coloring for H (n, 4) that improves upper
bound to 12n — 6 < ys(H(n,4)) < 12n.

Keywords: Strong chromatic index, Strong edge coloring,
Hamming graphs.

Introduction

All graphs considered in this paper are finite and simple. We denote
by V(G) and E (G) the sets of vertices and edges of a graph G, respectively.
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The degree of a vertex v € V(G) is denoted by d(v) and the maximum
degree of vertices in G by A(G).

An edge coloring of a graph G is a mapping ¢: E(G) — N. ¢ is called
strong if any two edges at distance at most 2 receive different colors. The
minimum number of colors required for a strong edge coloring of a graph
G is called strong chromatic index of graph G and denoted by y,'(G).

Strong edge coloring of graphs was introduced by Fouquet and Jolivet
in 1983 [3]. Later, during seminar in Prague, Erdés and Nesetfil proposed
the following conjecture.

Conjecture 1. For every graph G with maximum degree A(G),

5
ZA(G)Z, if A(G) is even,

XS’(G) < %(SA(G)Z _ ZA(G) + 1), if A(G) is odd.

Conjecture was proved for A(G) = 3 by [1] and [4] independently.
For A(G) = 4 it’s shown that y,'(G) < 22 [2], while the Conjecture 1 says
that y,'(G) < 20. Hurley et al. [5] showed that for graph G with sufficiently
large A(G), x,'(G) < 1.772A(G)? and this is the currently best known
upper bound for general graphs.

Graph, where each pair of vertices are connected with an edge, is
called complete and denoted by K,,. It is obvious that y,'(K,,) = |E(K,)| =

—n(nz_l). The Cartesian product G H of graphs G and H is a graph with set

of vertices V(G) X V(H), and 2 vertices u = (uy,u,) and v = (v, v,) are
adjacent if u; = v; and u, and v, are adjacent in H or u, = v, and u, and
v; are adjacent in G. Hamming graph H(n,m) is the Cartesian product of
n complete graphs K,,,. Vertices of the Hamming graph can be represented
as a tuples of length n, where each position can take a value from 0 to m —
1, and 2 vertices are adjacent if and only if they are equal in all but one
position.
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Main Results

We begin our considerations with strong edge coloring of Hamming
graphs.

Theorem 1. Let H(n, m) be a Hamming graph with m > 2. Then

(2n — 1)72n(m -1 < (H(mm)) < nm? (rzn - 1)

Proof In order to proof the lower bound let us consider m vertices
x; = (0,0,...,0), x, = (1,0,...,0), ..., x,, = (m —1,0,...,0). They all are
at distance 1 from each other and all the edges adjacent to that vertices
should receive different colors. For any vertex x from H(n,m), d(x) =
n(m—1). We get x,'(H(n,m))=md(x)—

m(m-1) _ (2n-1)m(m-1)
2 2 :
For the upper bound let us construct edge classes Ej ; ; - = {xy | where

m(m-1)

. =nmm(m-—1) —

x and y differs at position k, x;, = i, y; = j and the sum of all positions of
x (or y) except k-th position, by mod m, equals to r}, where 1 < k < n,
1<i<j<m,0<r <m.Anyedge from H(n, m) belongs to exactly one
of these sets and edges from the same edge class are at distance more than
2 from each other, which means that each set can be colored using one color.

nm?(m-1)
—
Notice that H(n, 2) is the n-dimensional cube. And the upper bound

We get y'(H(n,m)) <

from Theorem 1 matches with the result from [6]. Next, we consider strong
edge coloring of Hamming graphs when m = 4.

Theorem 2. Let H(n,4) be a Hamming graph. Then

12n — 6 < ys(H(n,4)) < 12n.
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Proof

Lower bound follows from Theorem 1. We will call strong edge
colorings ¢; and ¢, of the graph G combinable, if after joining same
vertices of ¢p,-colored G and ¢,-colored G to each other, coloring stays
strong for the newly formed graph. Let us construct 4, combinable between
each other strong edge colorings ¢, ¢, ¢ and ¢, of H(n, 4), that use 12n
colors in total by induction on n. For base case n = 1:

1 e =((0),(1) (1 e=((2),3)
2 e=((2),3) 2 e=((0),(1)
3 e=(0),3) _ )3 e=(1),2)
P@O=14 e=(@,@) PO 1 e=(0).®)
5 e=((0),(2) 5 e=(1,(3)
6 e =((1),03)) \6 e =((0),(2)

7 e =((0),(1)) (7 e=((2),03))

8 e=(2),03) 8 e=((0),(1)

)9 e=((0),(3) _ )9 e=(1), ()

=110 e=().2) @ =110 e=(0),3)

11 e = ((0),(2)) 11 e=(1,(3)

\12 e =((1),(3)) \12 e = ((0),(2))

We will use these colorings. Denote by (a4, a,,...,ar)H(n — k, m)

sub-graph of H (n, m) that contains vertices x, for which first k positions of
the tuple are equal to aq,a,,...,a; accordingly, 0 < a; <m for i =
1,...,k. H(n,4) can be represented as a combination of (0)H(n — 1,4),
(DHn—1,4), 2)H(n — 1,4) and (3)H(n — 1,4), where vertices from 2
components are connected if they differ only in the first position.

In the future we will refer to the edges, that connects vertices from
different components, as connector edges. By induction we have 4 strong
edge colorings ¢4, ¢, ¢5 and ¢, of H(n — 1,4) that use 12(n — 1) colors
in total. For the first coloring ¢’ of (H(n,4)), we color (0)H(n — 1,4)
using ¢4, (1)H(n — 1,4) using ¢, (2)H(n — 1,4) using ¢p; and (3)H(n —
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1,4) using ¢,. Easy to see that the set of connector edges (i)H(n — 1,4) —
(J)H(n - 1,4‘) (l < ]) iS the same as El,i,j,O U El,i,j,l U El,i,j,z U El,i,j,3'

Figure 1. Visualization of ¢4, ¢, ¢3 and ¢, colorings for base casen = 1.

In the future, under (cy, ¢y, c3,¢4) —coloring of ()H(n — 1,4) —
(J)H(n — 1,4) connector edges, we will understand assignment of a color
1 t0 Ey o, colorcy to Ey 1, color cz to Ey ; j, and color ¢y to Ey ; ;3 edge

classes.We Complete ¢p'; coloring with:

(12n—-11,12n - 10,12n — 9,12n — 8) — coloring of (0)H(n—1,4) — (1))H(n — 1,4)
(12n—-7,12n—6,12n — 5,12n — 4) — coloring of (0)H(n—1,4) — (2)H(n — 1,4)
(12n—-3,12n - 2,12n — 1,12n) — coloring of (0O)H(n —1,4) — (3)H(n — 1,4)
(12n-8,12n—-9,12n — 10,12n — 11) — coloring of (2)H(n—1,4) — (3)H(n — 1,4)
(12n—-4,12n—5,12n - 6,12n — 7) — coloring of (1) H(n—1,4) — (3)H(n - 1,4)
(12n,12n - 1,12n — 2,12n — 3) — coloring of (1)H(n—1,4) — (2)H(n — 1,4)
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Other 3 colorings can be constructed in a similar way:

¢, coloring of (0)H(n—1,4)

¢ coloring of (DH(n—1,4)

¢, coloring of (2)H(n—1,4)

¢, coloring of (3)H(n—1,4)

(12n—10,12n —9,12n — 8,12n — 11) — coloring of (0)H(n — 1,4) — (DH(n — 1,4)
(12n—6,12n — 5,12n — 4,12n — 7) — coloring of (0)H(n—1,4) — (2)H(n — 1,4)
(12n — 2,12n — 1,12n,12n — 3) — coloring of (0)H(n—1,4) — 3)H(n — 1,4)
(12n—9,12n — 10,12n — 11,12n — 8) — coloring of (2)H(n—1,4) — 3)H(n — 1,4)
(12n —5,12n — 6,12n — 7,12n — 4) — coloring of (1)H(n—1,4) — (3)H(n — 1,4)
(12n—1,12n — 2,12n — 3,12n) — coloring of ()H(n —1,4) — (2)H(n — 1,4)

¢3 coloring of (0)H(n—1,4)

¢, coloring of ()H(n—1,4)

¢, coloring of (2)H(n — 1,4)

¢, coloring of (3)H(n—1,4)

(12n—9,12n — 8,12n — 11,12n — 10) — coloring of (0)H(n — 1,4) — (DH(n — 1,4)
(12n—-5,12n — 4,12n — 7,12n — 6) — coloring of (0)H(n— 1,4) — (2)H(n — 1,4)
(12n —1,12n,12n — 3,12n — 2) — coloring of (0)H(n —1,4) — 3)H(n — 1,4)
(12n—10,12n — 11,12n — 8,12n — 9) — coloring of (2)H(n —1,4) — 3)H(n — 1,4)
(12n—-6,12n—7,12n — 4,12n — 5) — coloring of (1)H(n—1,4) — (3)H(n — 1,4)
(12n—2,12n — 3,12n,12n — 1) — coloring of (1)H(n—1,4) — (2)H(n — 1,4)

¢, coloring of (0)H(n—1,4)

¢, coloring of (1)H(n—1,4)

¢, coloring of (2)H(n—1,4)

¢5 coloring of (3)H(n—1,4)

(12n—-8,12n - 11,12n — 10,12n — 9) — coloring of (0)H(n—1,4) — ()H(n —1,4)
(12n—4,12n-7,12n - 6,12n — 5) — coloring of (0)H(n—1,4) — (2)H(n—1,4)
(12n,12n - 3,12n — 2,12n — 1) — coloring of (0)H(n—1,4) — (3)H(n—1,4)
(12n—-11,12n - 8,12n — 9,12n — 10) — coloring of (2)H(n—1,4) — (3)H(n —1,4)
(12n—-7,12n—-4,12n — 5,12n — 6) — coloring of (1)H(n—1,4) — (3)H(n —1,4)
(12n-3,12n,12n — 1,12n — 2) — coloring of (1)H(n—1,4) — (2)H(n —1,4)

Easy to see that colorings ¢';, ¢',, ¢'3, @', are strong, combinable
between each other, cover all the edges and use 12n colors in total.
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(12n — 11, 12n —
10,12n — 9, 12n —
8)—coloring

(12n — 3,12n —
2,12n —
1, 12n)—coloring

(12n, 12n —
1,12n — 2,12n —
3)—coloring

(12n — 8, 12n —
9,12n — 10, 12n —
L1)—coloring

Figure 2. lllustration of ¢'; coloring for H(n, 4).
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CUJIBHAS PEBEPHASA PACKPACKA I'PA®OB XOMMUHI'A
B YACTHOM CJIYYAE

A. [Ipamoan
Poccuiicko-Apmanckuii ynusepcumem
AHHOTALNUA

B nmanHO# cTaThe paccMaTpHBAIOTCS TOJBKO MPOCTHIC, KOHEYHBIE rpadbl. Pe-
OepHas packpacka ¢ rpada G Ha3bIBaeTCs CUIBHOH, eciu Jro0ble 2 pedpa Ha paccTo-
STHUH He 0oJiee BYX OKPAIICHEI B pa3InJHbIC IBeTa. MUHUMAIIEHOE KOJINYIECTBO IIBe-
TOB, HEOOXOJAUMBIX Ul CHIIBHOM pebepHOl packpacku rpada G, Ha3pIBaeTCs CHIIb-
HBIM XpOMAaTHYECKUM HHIEKCOM rpada G u o6o3Hagaercs x,' (G). I'padom Xsmmunra
H(n,m) Ha3biBaeTCs MPsAMOE MPOU3BEACHNS N MONHBIX rpadoB K. B 3ol cratske,

@n-ym@m-1) YL(H(n,m)) <

it rpagoB Xommuara H(n,m, mokazaHo dYTO >

nm?(m-1)
——,— Kpome Toro, B cratse nokasana packpacka as H(n, 4) koropas ynyumiaer

BEpHYIO OlleHKY 110 12n — 6 < y¢;(H(n, 4)) < 12n.
KiaroueBble cj10Ba: CWIBHBI XPOMATHYECKH WHJEKC, CHIIbHas peOepHas
packpacka, rpadbl X3MMUHTA.
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ABSTRACT

In this paper, the problem of tracking one object is analyzed.
A number of classic algorithms such as MEDIANFLOW tracker,
MOSSE tracker, CSRT Tracker, SIFT were considered. And also
algorithms based on deep learning, such as SiamFC, SiamTPN
and TransT. These algorithms have been implemented on UAVs.

Experiments have been carried out in the real world to reveal their
strengths and weaknesses.

Keywords: Object Tracking, Computer Vision, Unmanned
Aerial Vehicles, Neural Networks.

Intro

Object tracking has been one of the main tasks in the field of
Computer Vision due to the complexity and wide range of applications in
Video Surveillance, Robotics, Visual Servoing, etc. Changing illumination,
pose and scale of the object, fast motions, continuing to track the object,
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even if it has been out of the camera’s view for some time: these are all non-
trivial challenges associated with tracking. Single object tracking aims to
continuously track previously initialized objects in the video feed. In the
particular case of pre-initialized single object tracking, the situation is
complicated further due to the fact that the previously initialized object is
not under the limitation of belonging to the subset of previously known
objects.

Object tracking methods

During the last 2 decades, a number of interesting approaches have
been proposed to solve this task. As a first move, tracking algorithms
implemented in the OpenCV [5] library was considered. There are seven
classical implementations available: BOOSTING, MIL, KCF, TLD,
MEDIANFLOW [1], MOSSE [2], and CSRT [3]. These online trackers
combine motion models and appearance models to track the object from
frame to frame. We’ve decided to experiment with the last 3 trackers due to
real-time performance constraints.

MEDIANFLOW tracker — The algorithm is based on the Lucas-
Kanade method. Internally, it tracks the movement of the object in forward
and backward directions in time and measures the divergence between the
two trajectories.

MOSSE tracker — Minimum Output Sum of Squared Error algorithm
is based on the calculation of adaptive correlations in Fourier space. Created
filters minimize the sum of squared errors between the actual correlation
output and the predicted correlation output.

CSRT Tracker — The Discriminative Correlation Filter with Channel
and Spatial Reliability algorithm uses a spatial reliability map to adjust filter
support for a portion of a selected region from the tracking frame. This
provides an ability to increase the search area and improve the tracking of
non-rectangular objects.
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Next, we experimented with SIFT [4], which 1s based on keypoint
matching. The main idea of this algorithm is to encapsulate information
about the frame using important key points (Figure 1), and then find the
transformation that will match the group of important key points from
frame to frame.

SIFT — This algorithm consists of 4 main parts:

e scale-space filtering based on Difference of Gaussian (DoG) to
search local extrema over scale and space

e keypoints localization using Taylor series expansion of scale-
space to adjust the location of extrema

e orientation assignment to each keypoint based on image
gradient to provide rotation-invariance

e new descriptor generation for keypoints using magnitude and
orientation of the gradient of image

Figure 1. Detected keypoints by SFT

Deep learning-based object trackers — 3 methods, described below,
are based on neural networks.

Siamese network-based architectures are amongst the most popular
object tracking methods.

They consist of two joint neural networks with identical weights. First
neural network takes as input the reference image and creates reference
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vector embedding. Second neural network takes as input the search image
(for ex. next frame), cuts it into pieces and performs the same operation
creating search embedding. Finally, the closest matches are found and box
coordinates in the search image extracted.

Figure 2 shows the SiamFC [6] architecture. It uses fully connected
convolutional layers to compute embedding. For the reference image, it
produces one embedding. In the final step cross correlation operator (* in
Figure 2) is used to find the closest region in the search image.

SiamTPN [7] (Siamese Transformer Pyramid Networks) structure is

shown in Figure 3.

Reference image Reference Embedding
& -;I(pi >
127x127x3 ’ 6x6x128
]
E Network
-
== * 17x17x1
Correlation Map
| &F 7 e} —
L 5
T
22x22x128
255x255x3
- Search Embedding
Search image

Figure 2. SamFC Model

CLS REG
Pyramid == Pyramid
Transformer . Transformer

Correlation
operator

g

Figure 3. SamTPN Model.
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In contrast with SiamFC, it takes 3 embedding from reference and
search images, which allows it to feed them into Pyramid Transformers and
get a better representation of images. After that, it counts correlation
between those two representations from the pyramid transformer, and
passes output to Classifier and Regressor. Classifier predicts which box
matches to our reference image most and returns center’s coordinates, width
and height (x, y, w, h). Regressor tries to tune that coordinates and sizes to
include a reference image inside it more accurately.

Finally, let’s take a look at TransT [8] architecture (Figure 4).

Feature Extractor Feature Fusion Network i
Lok S Template Vectors 1 : Re-{gmssmn
§ N Feature Fusion Layer ! Vectors

q g
ECA CEA i .E-usmn\u:lors Prediction Head

' ) L ] i
i 1 Classification
Vectors

Figure 4. TransT Model.

As before, network inputs are Reference and Search images. At the
first step, features from those two images are extracted and converted into
vectors using convolution. In the Ego-Context Augment (ECA) block, the
model tries to pay attention to semantics inside itself and find regions of
interest (ROI) using a multi-head self-attention mechanism. Cross-Feature
Augment (CFA) block takes from search image feature map and reference
image feature map and combines them using multi-head cross-attention
mechanism to see which region of first is correlated most with the second.
In the end of this feature fusion block, Fusion vectors are obtained and used
to classify and regress the final prediction box.
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Siam-TPN and Trans-T both rely on transformer and attention

mechanisms. To get more detailed information about these topics, the

readers are encouraged to take a look at the following articles.

Results

All of the mentioned algorithms were implemented in a number of

short video sequences taken from the drone [9]. In table 1 are the

specifications of the drone.

Table 1.
Testing drone information
drone frame, Holybro S500 kit telemetry SiK Telemetry
motors, ESC, and Radio v3
propellers
Power module PMO06 v1 remote FrSky Taranis
controller | X9D Plus
(ACCESS) with
SIYI FM30
flight controller Pixhawk 4 receiver FR receiver
GPS module Holybro M9N GPS | camera RunCam? 4K
edition.

At the start of the video, identical initial box coordinates were given

to the trackers as input. Predictions were collected and merged to form a

single video file with predicted boxes from each tracker marked with

different colors. Figure 5 shows one photo from such a sequence.
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Figure 5. Comparing different methods.

Table 2.

Numerical results of Single Object Tracking

for 3 video sequences (IoU metric)

Algorithms Experiment 1 Experiment 2 Experiment 3
CSRT 80.60% 0.19% 17.74%
MOSSE 8.96% 0.04% 0.05%
MedianFlow 9.21% 0.03% 1.27%
SIFT 4.06% 0.01% 0.15%
SiamTPN 94.60% 85.43% 2.45%
TransT 99.75% 95.89% 84.24%
Conclusion

In this paper, we’ve analyzed several single object tracking

algorithms. An end-to-end, general pipeline was built to initialize and track
the object in the real-time video feed. The implementation of classical
trackers was based on OpenCV, while the original papers and GitHub
repositories were used to build deep learning trackers. All algorithms were
tested on videos captured from a flying drone.
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Here is an incomplete list of drawbacks of OpenCV-based trackers
and SIFT: low speed, inability to stop tracking when the object is lost,
inability to continue tracking after the object appears again, tracking similar
objects instead of selected one, object loss at high speed of its movement.
SiamFC worked better than traditional trackers. Here the problems begin
when a tracked object goes behind another object and comes back.
SiamTPN and TransT were the best trackers mentioned in the paper. These
trackers were robust, and invariant to scale and shape changes. They showed
the ability to find the object after losing it from the image. Although, there
is still a lot of room for improvement, as can be seen from the videos and
numerical results.
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CPABHEHHUE AJITOPUTMOB CJIEZXKEHUSA 3A OBPBEKTOM HA
BUAEOIIOCJIEJOBATEJIBHOCTH ITIOJIYYEHHBIX U3 BILJIA

B.I'. Menkonan, B.P. Caaxan, JI.A. Kupakocan, O.A. Ozaunecan
AHHOTALUSA

B naHHOIf cTaThe aHAMU3UPYETCS 3a7aya CIEKEHUS 3a OJHUM O0BEKTOM. bbut
paccMOTpeH psifl KJIACCUYECKUX allTOPUTMOB, Takux kak Tpekep MEDIAFLOW, tpe-
kep MOSSE, tpekep CSRT, SIFT. A Ttakke anropuTMbl Ha OCHOBE ITyO0OKOro 00yde-
Hus, Takue kak SiamFC, SiamTPN u TransT. DT anropuT™sl ObIITH pearTu30BaHbI Ha
BIUTA. bty ipoBeIeHbI 3KCIIEPUMEHTHI B PEalIbHOM MUPE, YTOOBI BHISIBUTH UX CHITh-
HBIE U clla0ble CTOPOHBI.

KiroueBble cj10Ba: clie)XeHHE 32 00bEKTaMM, KOMIIBIOTEPHOE 3peHue, Oecu-
JIOTHBIE JICTaTeIbHEIE allapaThl, HEHPOHHEBIE CETH.



76 Becmuux PAY No 2, 2022, 76-86

MEXAHHUKA

DOI 10.48200/1829-0450 pmn_2022 2 76 Mocrymmna: 08.12.2022r.
VK 539.376 Crana Ha periensuto: 08.12.2022r.
ITonnucana x neuatu: 12.12.2022r.

I'MCTEPE3UC IIPU 3HAKOIIEPEMEHHOM
HEPUOJUYECKOM HAT'PY KEHUU I'PYHTOB
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AHHOTALNUA

B nmanHO# cTaThe UCCIeMOBaH Mpoiecc 00pa3oBaHMs 3aMKHY-
TOH TIETIIN TUCTEpE3rca TPYHTOB B YCIOBUSX 3HAKOIEPEMEHHBIX
MEePUOANYECKIX HM3MEHEHWH HampshkeHus. lccnenoBaHue ocy-
IIECTBISUIOCHh Ha 0a3e HACIEICTBEHHON TEOPHHU MOJI3YYECTH, MPH
AKCIIOHEHIIUANBHOM sifipe. [lonmydeHsl ypaBHEHME MIETIIN TUCTEpe-
3UCa U Bpra)KCHI/Ie IJIs1 BBIYUCIICHUS OCTaTO‘IHOﬁ ae(bopMauym
3aBHCHMO OT HOMepa KA. [1oydeHbl U30JUHIH HYJIEBOW OC-
TaTOYHOHU JedhopMaliK IPHU 3HAKOMIEPEMEHHOM MEPUOINIECKOM
Harpy>KeHHUH.

KaroueBble ciaoBa: THCTEPE3WC, NUCCHUIANMSA, TOJI3YYECTh,
MePUOANYECKOe HarpyKeHue.
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H3BecTHO, YTO B TEUEHHUE JKCIUTyaTallud 3[aHUS U COOPYXKEHUS,
IPYHTOBBIE MaTepUaJlbl UX OCHOBAHUM IOJBEPrar0TCs 3HAKOIEPEMEHHBIM
MEePUOJNYECKUM HArpyKEHHUSIM B pe3yJIbTaTe MPUIOKEHUS THHAMUYECKIX
HaAMpPsDKEHUH — TaKuX, KaK 3eMJICTPSACEHUs, B3PhIBbI, BETPOBHIC HArpy3Ku
iy BuOpanmu MamuH. McenenoBanue U aHanu3 ¢ 1eJbi0 OLICHKH PeaKIuu
3/laHUN U COOPYKEHMH Ha MPUJIOKEHUE BBIIICYKAa3aHHBIX JTUHAMUYECKUX
Harpy>KeHU HaxOJIUT BCE BO3PACTAIONIYI0O HEOOXOAMMOCTh B IMPAKTUKE
ucclenoBaTelel, IPOEKTUPOBIIMKOB U CTPOUTEIbHBIX MHXKEHEpoB [1]. s
OINMCAHUS IPYHTOBBIX OTJIOXKEHUH U UX peakUuil MOTYT OBbITh UCIIOJIb30Ba-
HBI pa3IUYHbIE UACATU3UPOBAHHBIC MOJICIH U aHATTUTHYECKAas TEXHUKA [2,
3, 4, 5]. Ho, He3aBucuMO OT BbIOOpA 3TUX MOENEH U TeXHUKH, CHadala
HEOO0XO/MMO OTIPEICIUTh COOTBETCTBYIOIIEE HANPIKECHHO-IE(POPMHUPO-
BaHHOE COCTOSIHME W MOTJIOLIAIOIINE CBOMCTBA MaTepuaioB OCHOBAHMM.
Jnst 3TUX 1eneil MOryT ObITh MCHOJIBb30BaHbl PAa3IUYHbIE J1a0OpaTOpHBIE
uccinenoBanus. COOTBETCTBYIOLIUI BbIOOp B KAaKOM-JIMOO JAHHOM Cllydae
3aBHCHT IJIaBHBIM 00pa3oM OT Auana3oHa aedopmannii. MHOrouncieHHbIE
9KCIIEPUMEHTATIbHBIC HCCIEA0BAHUS MTOKA3bIBAIOT, YTO MIPU HU3KOM YPOBHE
nedopmanuii TpyHTBI 00JIaAal0T BBICOKMM MOJYJIEM CIIBUTA M HU3KUM 3a-
TyxanueMm. [Ipu BeiIcOkOM ypoBHE nedopmaiiiii HeTMHEWHOCTh MTOBEICHUS
TpyHTa NposiBisieTcs 0osiee CUIbHO, MPUBO/IS K 00Jiee HU3KUM BEIMYUHAM
MOJYJISI CIBUra, HO U K 00jee BBICOKMM 3HAU€HUSM 3aTyXxaHus. Tak Kak
MOBEJICHUE TPYHTOB 3aBUCUT OT BEJIMYMHBI UX JedopManuu, yA0O0HO
NPEICTaBUTh Pa3INYHbIe CIIOCOOBI UCCIEAOBAHUN B COOTBETCTBUU C aMII-
JUTYI0M OTHOCHUTENIbHOM CABUIOBOH nedopmanuu. B ciydasx, korga ca-
BUroBas Aeopmaliysi oueHb Maja, JJIsl ONpeesIeHUs] COOTBETCTBYIOIINX
JUHAMHYECKHUX CBONCTB IPYHTOB MOTYT OBbITh UCIOJIB30BaHbI TaKue 1a00-
paTOpHBIE METOJBI MUCCIIEOBaHMs, KAK PE30HAHCHBI METOJ MCIIBITAHUM
00pas3IoB rpyHTa U METO]] IMITYJILCHOTO TIpOo3By4HBaHus |5, 7]. O6a meTo-
Ib1 (PE30HAHCHBIN U MPO3BYYHUBAHUS ) IIMPOKO HUCIIONB3YIOTCA Ui OTpeie-
JICHUsI CKOPOCTH PACIPOCTPAHEHUM BOJHBI HAIpsDKeHHs, Ko3dduuumenra
3aTyXaHusd U MOJYJis YNPYTrOCTH IPU OY€Hb MaybIX Aeopmanusax. Js
U3YyYEHUS TUHAMUYECKUX CBOMCTB TPYHTOB IPH 0OJiee BHICOKOM YPOBHE
CABHUTOBBIX AeQOpMaIlfil HCIIOIB3YeTCs APYyTHUe METO b [4].
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Bo mHOrux ciyyasix cIBUroBble AedopManuy rpyHTOB IIPU 3emJie-
TPsSICEHUH BO30YXK/1at0TCs Giarofapsi ppacipoCTPaHEHUIO CIBUTOBBIX BOJIH
OT HWXKEJEeKAIIUX CII0eB. B TeyeHHe 3eMJIeTpsICeHUs] KaK LUKINYECKUe
C/IBUT'OBbIC HANPSKEHMS, ACUCTBYIOIINE HA HIKHIO M BEPXHIOIO TPaHH,
TaK M 3JEMEHT IPYHTA U3MEHSAIOT HECKOJBKO Pa3 CBOE HampasieHue [9].
bnuskoe nmaboparopHoe BOCIIPOU3BEACHUE B ATUX YCIOBUAX OCYIIECTBIISA-
€TCsl B olbITax Kak npoctoi casur [10]. MccnenoBanus, n30KE€HHbIE B pa-
6ote [11], OblTM TPOBEIEHBI C LENBIO MOJYYEHUS JAHHBIX IO JUHAMUYEC-
KM CBOWMCTBaM IPYHTOB (MOJyJIb C/IBUTA, TUCTEPE3UCHOE 3aTyXaHHe) Mpu
JIOCTAaTOYHO BBICOKMX aMIUIMTYyAax jAedopMaliuii, KOTOpbleé MOTYT BCTpe-
TUTHCS HA MPaKTHKE. B maHHO# paboTe ObUIM POBECHBI UCTIBITAHUS TPYH-
TOB Ha IPOCTOM cABUT ¢ aMIuuTyaamu B npenenax 0.01—- 0.5 npouenramu
npu 2 ¢M BBICOTHI 00pa31oB. YacToTa Bo3/eiicTBUs Obl1a BhIOpaHa paBHON
1 ri1. CortacHO COOTBETCTBYIOMICH BETMUMHE HAMIPSDKEHUH U epopmariuid,
MOCTPOCHBI TPadUKN 3aBUCUMOCTH T — Y ISl KOHKPETHBIX ITUKJIOB, 00pa-
3YIOIIUX TUCTEPE3UCHYIO nieTiiro. Ha Puc. 1 mpuBeneHb n300pakeHHsT dTHX
KpUBBIX, HocTpoeHHsle uist 1, 2, 10 u 300 uuxios.

B pa6ore [12] npuBeaeHb! 3KCIEpUMEHTaIbHbBIE JAHHBIE O MTPOLIECCE
00pa30BaHMs 3aMKHYTOH NETJIM TUCTEPE3UCA, MOITYUEHHbIE HA TIIMHUCTBIX
IpyHTaxX MPH MHOTOKPATHBIX CTYNEHYATHIX MPUIOKECHUIX KOMIIPECCHOH-
HOT'O HalIPSDKEHUS, YEPEAYIOIIEroCs € MOIHOU pa3rpy3koil. [loixydeHo, uyto
JMHENHAsi TeOpusl HACJIEICTBEHHOCTH IOJ3Y4YECTU C HKCIOHEHIIMAIbHBIM
SJIpOM OIHCHIBAET 3TOT MPOLECC IOCTATOYHO TOUHO. [IpuBeneHb! TEOpETH-
YEeCKUE JaHHBIE O TUCTEPE3UCE NPU Pa3INYHBIX HOMEpAX LUKJA — B 3aBU-
CUMOCTH OT NEPHOJia HATPYKEHHUSL.

Lenvro nacmosiweli pabomsi SBIAETCS UCCIIEIOBAaHUE TIpoliecca 00-
pa3oBaHUs 3aMKHYTOW NETJIM THUCTEpE3Uca IPyHTOB B YCIOBUSAX 3HAKOIIeE-
PEMEHHBIX MEPUOTNICCKUX N3MEHEHUI HAIPSDKEHHSI, €r0 OMMCAHMS C UC-
[10JIb30BaHNEM HACJIECTBEHHOMN TEOpUH MOJI3yYECTH B CPAaBHEHUU C 3KCIIE-
PUMEHTAIBHBIMU JaHHBIMHU, IIOJTy4YE€HHBIMU B padoTte [11].
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oo 4 mno 1

Lmn 1 + Limsm 2

-100 L -0 L

mno +

L 300

Puc. 1. Dxcnepumenmanvhvie Kpugvle T — y (nemau eucmepesuca),
noxayyentule ¢ pabome [7].

O6o03HauuM yepe3 A «octatounyio» nedopmanuio A, A, 1 (Puc. 2)
OCTAIOIIYIOCS TIOCJIE COOTBETCTBYIOIIETO IMKJIIA HATPY>KEHUS, TJIe N — I[eJI0e
yucio nepuoaoB T-Harpyxkenus. IlogcuntsiBas A kak ¢ynkuuio T u n,
U3ydeHue Ipolecca 00pa3oBaHUsl 3aMKHYTOHM METIH TUCTepe3rca MpHUBO-
JMT K TIOJTy4eHu o BelpaxkeHus Uit A (T,n) mpu ucnoiab30BaHUN HACTIE/ICT-

BEHHOU TEOPUH I1OI3y4ECTH.
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~

P4

Puc. 2. Obpasosanue 3aMKHymot nemau cucmepe3uca npu 3HAKONepPemMeHHOM
CUMMEMPUYHOM HASPYHCEHUU.

Jnst onrcanust geopManiiy Mpu NepeMEHHBIX KacaTeIbHBIX Hampsi-
XKeHusx T(t), COrNIacHO JIMHEWHOW TEOpHUH HACIIEICTBEHHOCTH, OyJeMm
umeTh [13]

t t 6 (t—t
y(@®) =2+ fyee) 2 d (1)

JlommycTrM, 4TO anmpoKCHMAIus MOJI3y4ecTH Marepuana Mmpu eau-
HUYHOM HampspKEHUH (Mepa Moy3y4yecTH) onpenensercs hopmyoit [14]

— —at
§(t) = §o(1 —e™) ),

rne 8§p U a — MOCTOSIHHBIE, ONPEACIIsieMbIE U3 OTBITA.
[TpenmnonoxumM, 4TO U3MEHEHUE HANpsDKeHUs T(t) MMEeT MECTO I0

CJIEJYIOLIEMY 3aKOHY:

T(t) = to[sin(wt + @y) + 1] (3),



T.JI. llempocan, C.H. Xauampan 81

I7le — W-LUKINYecKas 4acToTa, (@g-HadanbHas (aza, A — ocTosiHHAS onpe-
JEJSAIoIas CTENEeHb aCUMMETPUN LIUKIIMYECKOIO0 Harpy KeHUs, KOTOpast U3-
MeHsiercs B pegenax 0 <A < 1.

[Ipu ucnonp30BaHUM JIMHEWHON TEOPUU HACIEICTBEHHOCTH B IPUMeE-

HeHuu K (2) u (3) umeem:

sin(wt + @y) + 1
G
o

y(@®) = To{

1ol [a sin(wt + @y) — w cos(wt + @)

+ w cos pge % — asinpye*] + 16,(1 — e"”)}

“4)
B ¢dopmyne (4), moacrasisist t = Tn, nmomyunm 3HaueHHs aedopma-
uuit y(t) B Toukax A, A, A; ... ... ... (mpu n=0,1,2,3........ )
To(singy + 1)
y(@®) = a
8oty _
+ T+l (asin g,
— W COS @
+ w cos e %" — a sin pye " T™) + 5yt (1 — e~%Th)
&)
[Tpu sTom pynkuus A(T,n) onpenensiercs Tak:
A(T,n) =y(Tn) —y(T(n — 1))
_ _ (awcosgy  a’singg —aT(n-1)(1 _ ,—aTn
= 0oTo [/1 ( a?+w? a?+w? )] € (1-e ) 6)

[TapameTpsl mom3yuyectu 6y U @, UCIONB30BaHHbIE B (hopmyie (6)
npu pacuere 3HadeHus QyHkuu A (T,n), B3ATHI U3 pe3yIbTaTOB UCCIIEN0-
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BaHU, npencTaBieHHbIe B padoTe [10], KOTOpbIe NOTy4YeHbI IPU UCIBITA-
HUM HA MOJI3Y4YeCTh TJIMHUCTBIX TPYHTOB HA MpUOOpax Kpy4dEeHUs CILIOUI-
HBIX 00pa3LoB. YKa3aHHBIC MapaMeTpbl UMEJIH CIEAYIOIINEe YHUCICHHBIE
sHauenus: 8, = 0.0112,a = 0.126 ¢~ L.

Hwxe paccmaTpuBaroTcs rpaguueckue NpeicTaBlIeHUs U aHAIU3 3a-
BUCUMOCTH OCTaTOYHOH JleopManuu A OT psijia XapaKTepUCTUK IEPUOIH-
YEeCKOI'0 M3MEHEHUS HAIIPSKEHUS], COTJIACHO TEOPUH HAC/I€ACTBEHHOCTH.

Ha Puc. 3 npuBeneHs! TeopeTnueckre Kpusble A(n), HOCTPOCHHBIE 110
dopmyie (6) 11 HECKOIBKUX 3HaUeHUH neproaa T mpu NOCTOSHHOM aM-
IUIUTYAE Tg. SICHO, UTO TP TaKOM NPOrpaMMe Harpy>kKe€Husl, 3HaUEHNUE CKO-

POCTH U3MCHCHUS HANIPSKCHUSA YMCHBIIACTCA € YBCIIMYCHUCM IICPUOJIa T.

A(TN) T 1=0.02,
—0.00005 N
0.0001
0.00015
-0.0002
0.00025 Jiz=
-0.0003
A(n,T) A=0.1,
A(TN) Trmin 2=0.03, 0.00025 |- Toma
—0.00005 o
~0.0001 i
—0.00015 oo
s 0.00005
_0.00005 o0
— _— A(n,T) A=08,
0.0012
0.001
0.0008
0.0006
0.0004

0.0002
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A(n,T) 1=0.8,
0002 7,
00015  \

0001

0.0005 T

TJ?HF\ ——
2 4 6 8 10
Puc. 3. Teopemuuecxue kpuegvie A(n), nocmpoennvie no gpopmyne (6) 05t HECKONbKUX

snauenuti nepuoda T npu nocmosinHom amnaumyoe Ty (A — cmenens acummempuu
YUKIQ).

Ha Puc. 4 npencrasnensl Teoperndeckue kpusbie A(T), moctpoen-
Hble TI0 dopmysie (6) I HECKOJBKHX IMKJIOB N MPU MOCTOSHHOM aM-
TUTUTYAC Tg.

AT.nn=6 1=0, -
: 25

—0.00005
—0.0001
-0.00015
—0.0002

~0.0001 \ N il ~0.0001

~0.00015 - -0.0002 il
~0.0002
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A(T.n) 1=04. AT, 1=08,
— P p 0.0025
P e 0.002
0.0006 /
0.0015

0.001

Puc. 4. Teopemuueckue kpugvie A(T), nocmpoennwvie no gpopmyne (6) 011 HeCKOTLKUX
YUKII08 N NPU NOCMOSIHHOM amnaumyode Ty (A — cmenenv acummempuu yukia).

Kax Bumno u3 Puc. 3 u Puc. 4, ocratrounsie nedopmaiiuu nocie Kax-
JIOTO0 IIMKJIa B Ipoliecce 00pa30BaHus 3aMKHYTOH METJIM TUCTEpe3rca OUYeHb
3aBUCAT OT NEPHOJIa HATPY>KCHUS, a TIPU HAJTUIUN aCUMMETPHUH Harpyxe-
HUS MOXET MEHATHCS 3HAK OCTATOYHOM JeOopMaIinH.

Od4eBuHO, YTO TPU YCIOBUU HYJIEBOW OCTATOYHOM AchOopMaIvu 13
(6) MOXXHO TTOJTYYUTh COOTHOIIIEHNE MEX Ty IEpUoAoM T 1 CTETIEHBIO aCHM-
Metpuii A. C MOMOIIBI0 BBIIIEYKAa3aHHOTO MOJyYEHHOTO COOTHOIICHUS

MO>KHO MOCTPOUTH U30JIMHUHM OCTATOYHON Je(pOpMaLuu ISl pa3HbIX TPyH-
ToB (Puc. 5).

Puc. 5. U3onunuu nynesoii ocmamounoii degpopmayuu npu 3HAKONEPeMeHHOM
nepuooOUHecKoM HAzpyduceHuu (0y, a, z napamempuvl NOA3YHECmi PasHblX SPYHIOS,

onpeoensemvle U3 ONbLIMA,).
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HYSTERESIS UNDER SIGN-ALTERNATE PERIODIC LOADING
OF SOILS

T. Petrosyan, S. Khachatryan

Institute of Mechanics of NAS RA
National University of Architecture and Construction of Armenia

ABSTRACT

The process of formation of a closed hysteresis loop of soils under conditions
of alternating periodic voltage changes was studied in this work. The study was carried
out on the basis of the hereditary theory of creep, with an exponential kernel. An
equation for the hysteresis loop and an expression for calculating the residual strain
depending on the cycle number were obtained. Isolines of zero residual strain under
alternating periodic loading were obtained.

Keywords: hysteresis, dissipation, creep, periodic loading.
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